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PREFACE 
 
 

 PSI has been fortunate to work for many years with the U.S. military.  The company has 
enjoyed the time it has been afforded to solve extremely difficult design problems in 
communications and control.  But the real reason PSI is fortunate is the opportunity to work for 
military people who must deal with the harsh realities of war. 
 
 Military people are trained to think differently, especially those who rise to higher grade 
levels, whether enlisted or officer.  This is because their major concern in life is survival.  Even 
those in the research and development community are driven to develop systems to improve their 
probability of survival. 
 
 When one is concerned with survival, one is concerned with seeking the truth.  One’s 
own life may depend on it.  In the military, this is emphasized by the term ground truth.  Ground 
truth is the concept of what really exists.  The word concept is used because we may or may not 
be able to measure it. 
 
 If we write something in a document, and that document is our ground truth, then anyone 
who reads it is able to see the ground truth - first hand.  But not everyone who reads it will derive 
the same meaning.  They may derive different perceptions of ground truth from that implied by 
the author.  If the document gets lost, and we have to derive the meaning from memory, or by 
second or third hand word-of-mouth, then it becomes more likely that the original meaning can 
be misinterpreted - or lost.  So, for the most part, we must deal with perceptions of ground truth. 
 
 Since the earliest civilizations, scientists have been engaged in developing mechanisms to 
seek ground truth.  Looking glasses, field glasses, microscopes, and binoculars were all designed 
to help us forge a better picture of ground truth, often from a distance.  Satellite imagery has 
become a significant technology for capturing ground truth. 
 
 There have been many articles written by well known authors on the subject addressed 
here.  Various authors see the picture differently.  What is popular as being the real picture at 
one time may be set aside for what’s considered a better picture at a later time.  If we are all 
seeking ground truth, then we should converge on the picture, even if our looking glasses are 
different. 
 
 From that standpoint, the work presented here is considered more of a looking glass than 
a new discovery of ground truth.  Most importantly, it is aimed at achieving surprise, speed and 
synchronization of missions to maximize their intended effects while constraining losses. 
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1. BACKGROUND 
 
 This work is aimed at the Theoretical Underpinnings Of Predictive Battlespace 
Awareness.  This area was the topic of a white paper, [1], and proposal submitted to AFRL/IFS.  
This document has been produced as a result of discussions with Dr. Timothy Busch, AFRL/IFS, 
on the contents of previous work as well as the white paper and proposal, and particularly the 
Dynamic Situation Awareness And Prediction (DSAP) paper authored by Alex Sisti, [2]. 
 
 As the Sisti paper describes, the face and pace of combat engagements has changed.  This 
has led to the need for continuous dynamic assessment of the situation, and prediction of future 
outcomes that depend upon the reactions of an intelligent adversary as well as all the other 
factors that contribute to uncertainty in a combat environment.  Such an environment introduces 
requirements for new tools to support analysts and decision makers.  One of the most significant 
tool requirements is a new approach to simulation coupled with a capability for prediction.  
Simulation and prediction in a live combat environment present significant new challenges.  The 
effort described here focuses on these challenges. 
 
 
2. INTRODUCTION 
 
 The Joint Force Commander (JFC) controls the coalition forces.  That commander must 
develop the Courses Of Action (COAs) to be taken by the coalition forces.  Supporting him in 
the development and implementation of the COAs are other national air, ground, and naval 
combat commanders.  The Air Component Commander (ACC) is responsible for developing 
COAs for air operations.  These COAs must take into account the potential Enemy COAs of an 
intelligent adversary, as well as all of the other factors that influence the unfolding outcomes of a 
selected COA. 
 
 The effort proposed here will focus on the U.S. part of a coalition Aerospace Operations 
Center (AOC), while considering the special support required from the U.S. SCIF.  The number 
of functional areas required to support the ACC in the development of COAs and corresponding 
Air Tasking Orders (ATOs), and the corresponding subject area experts required to produce 
these plans imposes significant size and complexity requirements that must be accounted for.  
Each of these functional areas has specialized tools (many segregated for security purposes) to 
help assess the situation from their standpoint and develop subordinate plans to support proposed 
COAs and ATOs.  This is accomplished by using various tools and approaches at the subordinate 
levels, and by assessing problems and likelihood of success to determine the best way to support 
the mission as perceived at the next superior level. 
 
 The various subordinate plans are produced with assessments of effectiveness and 
performance outcomes, and some measures of accuracy, confidence, and risk relative to their 
specific mission support areas.  These are passed up an organizational hierarchy that produces 
higher level decisions that are passed up the line.  Improving the ability to assess different COAs 
rapidly, and the corresponding prediction accuracy required to assess likelihood of success at any 
level will help the next level up. 
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 Thus, whether we provide better tools for the coalition commander, or for his 
subordinates at a lower level, we will help the cause.  This effort draws upon PSI’s experience in 
supporting this process, focusing on approaches that can help at many levels, from the top down, 
and across the board. 
 
 
3. DEFINING THE PROBLEM 
 
 Much of the effort described in this document is a result of attempting to put the DSAP 
problem on a sound theoretical basis.  In that sense, all of the sections that follow are refinements 
of this section.  We will start at the top and work our way through using concepts and techniques 
derived to solve the problems associated with designing prediction and control systems. 
 
 
MILITARY PLANNING - AN OPTIMAL CONTROL PROBLEM 
 
 As described in the paper by Cave and Busch, [7], the military planning problem can be 
posed as an optimal control problem.  To understand this, consider the following.  The JFC 
makes decisions based upon the effects and objectives to be achieved and a large number of 
observable influences, including perceptions of the situation of both red and blue forces.  These 
decisions are also based upon what the JFC perceives can be done given a review of Courses Of 
Action (COA) that can be taken, including the effects of the Enemy COA (ECOA).  Once a COA 
plan is conceived, it is disbursed for implementation using the available resources. 
 
 Figure 3-1 is a simple illustration of a control system.  The JFC is a key element of the 
control system.  In this case, the control system contains a huge number of observable inputs that 
are percolated up from all of the intelligence and other sources that provide inputs into the 
decision process.  Once a plan is forged, it is promulgated down to the subordinate forces. 
 
 The plan that is promulgated is not unlike the optimal control sequence put out by the 
controller in the classic optimal control system.  Given desired objectives, the control system is 
constantly producing a sequence of parameters in real time that are used as controlling inputs to 
the system.  However, in this case, the system is distributed as described in a later section. 
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Figure  3-1.  Simplified representation of a control system. 
 
 
The Embedded Prediction Component Of A Control System 
 
 The sophisticated part of most control systems is the embedded prediction subsystem.  
This is characterized generically in Figure 3-2.  The prediction subsystem takes in a selected 
control sequence and observable inputs up to the current time T, and produces a prediction of the 
resulting system response out to some desired T+τ.  To accomplish this, the prediction system 
must contain models that represent all of the complexities required to produce the predicted 
outcomes with sufficient accuracy to support the COAs.  For this application, this is best 
accomplished using discrete event simulation and interactive graphics (a huge topic described 
elsewhere including many PSI documents).  The control system produces sets of control 
sequences to the prediction system and gets back corresponding sets of predicted system 
responses.  The optimal control problem is to come up with the control sequence that meets the 
constraints required of the system while optimizing some prescribed objective function.  In the 
ensuing discussion, we will use the words solution, control sequence, and COA interchangeably. 
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Figure  3-2.  The embedded prediction component of a control system. 
 

 



 

5 

PREDICTION VERSUS FORECASTING 
 
 When attempting to make decisions relative to best courses of action, one wants to know 
what the outcomes would be for each potential course of action selected.  An example is tracking 
the seismic behavior of a volcano, trying to determine whether or not to evacuate surrounding 
communities.  Evacuation will cause a major disruption; but without an evacuation, many lives 
may be lost.  When dealing with an intelligent adversary, one will be trying to postulate the 
adversary’s actions and reactions that will affect courses of action.  Predictions and forecasts are 
made to support the analysis and decision process that precedes courses of action. 
 
 If sufficient data and time exist, then a prediction can be made with the accuracy 
characterized.  If not, one must make a forecast.  When decisions are critical, particularly if life 
and death are at stake, it is important to understand the difference between prediction and 
forecasting to avoid misleading statements and corresponding results. 
 
 As defined here, predictions can only be made when the accuracy of the prediction 
mechanism can be characterized in terms of historic data used to compare apriori predicted 
outcomes to the actual outcomes.  Apriori is italicized because once one has seen the outcomes, 
any changes to the mechanism will generally require recharacterization of the error using data 
that has not been seen.  This point is critical and is discussed further in the next section.   If one 
cannot perform such a characterization, then one is making a forecast. 
 
 As defined here, the difference between prediction and forecasting is independent of the 
prediction mechanism.  One may use human instincts to make predictions.  As long as the error 
associated with the instinctive prediction mechanism can be characterized on a consistent basis 
statistically, confidence levels on the error can be produced.  On the other hand, one can use 
large quantities of historic data to feed a sophisticated mathematical model that generates future 
outcomes without characterizing the error.  This is a forecast. 
 
 If there is no history data, one cannot characterize prediction error, and therefore one 
must make forecasts.  This is true when new problems are being addressed that may not fit the 
existing prediction mechanism.  In these cases, one must determine whether the changing 
situation still fits the prediction mechanism, or whether it is time to drop the error 
characterization and confidence statements and go with a forecast.  This determination is 
relatively easy to do when the prediction mechanism is a mathematical model driven by 
mechanically quantified measured data.  This becomes difficult when characterizing prediction 
error based upon human instinct. 
 
 In Section 9, we will investigate a method for combining forecasts and predictions to 
produce a prediction.  This method will rely on the characterization of worst case outcomes, i.e., 
outcomes that occur based upon worst case conditions.  In effect, we will condition probability 
statements using worst cases. 
 



 

6 

THE PREDICTION PROBLEM 
 
 Prediction of future outcomes of systems must be couched in terms of probability 
statements.  In fact, they are conditional probability statements.  For example, one can predict 
whether or not it will rain tomorrow in Point Pleasant, New Jersey as follows: 

 
First Prediction:  Given the historic data on rainy days in Point Pleasant for the past 20 
years, one can predict the probability of rain by dividing the number of rainy days by the 
total number of days.  If the number of rainy days for the past 20 years (7300 days) was 
730, then the probability of rain tomorrow (or any day for that matter) is 10%. 
 
Second Prediction:  Given the number of rainy days in each month in Point Pleasant for 
the past 20 years, one can make separate predictions of the probability of rain for each 
month.  For example, one might say that - if the month is July, then the probability of rain 
is 5%; - if the month is November, then the probability of rain is 15%. 
 
Third Prediction:  Using knowledge of the weather patterns around the coast of New 
Jersey, one can rely upon the fronts moving from west to east.  Given knowledge about a 
rainstorm heading toward Point Pleasant from Pennsylvania, one can predict the 
probability of rain over the next 24 hours in 6 hour increments.  For example, one might 
say that the probability of rain is less than 2% over the next 6 hours.  It is 25% for the 
following 6 hours.  It continues to rise to 95% in the period 13 to 18 hours from now, and 
then falls off to 65% in 19 to 24 hours. 

 
 All of these predictions contain valid probability statements based upon historic 
measurements.  However, the accuracy of each is obviously different.  The difference in 
accuracy is determined by the conditioning of the probability statement.  The first prediction is 
conditioned only upon the number of rainy days in a year, with no additional information.  The 
second prediction is conditioned upon additional information, i.e., the number of rainy days in 
each month of the year.  It will be a more accurate statement.  The third prediction is conditioned 
upon a dynamic model of weather patterns.  This model contains much more information than 
the other two, and is much more accurate. 
 
 Predictions are statements of probability of the outcome of a future event.  In general, 
they are conditional probability statements, i.e., they are conditioned upon the information used 
to compute the probability.  The more information one can use to condition the probability 
statement, the more accurate the prediction. 
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Human Judgment Versus Automation 
 

 The general prediction problem is simply to produce the most accurate prediction 
possible given the time frame and resources at ones disposal.  As indicated above, predictions are 
probability statements that are conditioned on all of the information one can muster.  
Mathematical formulation is not as important as having additional information. 
 
 The classic example is that of the salesman who knows little about mathematics and uses 
a computer only to build a spread sheet to organize his forecasts of sales volumes of product 
lines for the next quarter.  The numbers come from his head.  The marketing department gets 
independent sales forecasts from a PhD statistician who uses various sophisticated statistical 
approaches and historic data to forecast the same sales volumes.  Why does the salesman 
consistently come up with a much more accurate forecast?  He has more information about 
what’s going on in the market! 
 
 As indicated above, predictions are conditioned probability statements.  Modelers that 
incorporate more information into their model will produce more accurate predictions.  This 
information need not be in the form of historic data.  It is likely that the most important 
information is knowledge about the structure of the system.  That’s why the salesman does 
better.  He knows what is happening in the market (his system).  If he’s good, he has intelligence 
on what’s changing.  Are some new stores opening in two months that will be buying?  Are some 
existing clients about to shut down?  He has a more accurate model in his head than the 
statistician who is manipulating historic data with time-series models. 
 
 This does not imply that we cannot build a model on the computer that incorporates the 
salesman’s knowledge.  In fact, we can generate probability statements conditioned on that 
knowledge.  If we had 100 territories each with a salesman, we could build one model with 100 
instances and get them to enter their knowledge and then roll up the results - automatically.  Can 
we get them to cooperate?  Yes, if we can improve their accuracy and still make it easy for them 
to enter their knowledge.  These are the practical problems we must deal with, and the questions 
we must answer. 
 
 
Human Judgment And Automation In PBA 
 

 When a commander goes into the field against a new enemy, he may not have much 
history to go on.  However, as each side makes a move, intelligence is gathered that is turned 
into information to condition predictions.  This process has evolved over many years.  Like 
seasoned salesmen, the participants in the planning process have been trained to look for critical 
pieces of information.  They are also in a position to account for observable changes in the 
structure of the systems they are dealing with, both friendly and from the opposing force. 
 
 To not capitalize upon this knowledge would be like the statistician who competes with 
the salesman, using only esoteric mathematics and historic time-series data.  If we want to 
maximize the accuracy of our predictions, we must maximize the information used to condition 
our probability statements.  To do this, we must understand and assimilate the current planning 
process - in detail!  To better represent these concepts, we need some additional definitions. 
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Defining Prediction Accuracy 
 
 Point predictions, e.g., “The probability that the temperature will be 80° tomorrow is 
65%,” are generally useless.  To produce accurate predictions as described in [6], one must state 
the probability of being within specified limits as defined by a distribution.   Even so, without 
knowledge of the accuracy of the distribution, the usefulness of the prediction is questionable.  
On must add a confidence statement about the distribution from which the statement was 
derived.  For example, we predict the temperature will be between 78° and 82° tomorrow with a 
probability of 80%, and a confidence level of 95%.  This is explained below using an example. 
 
 Consider that we build a system to predict weekly purchases of goods up to 12 weeks out.  
Figure 3-3 shows the historic data as well as the 12 week ahead predictions.  The prediction is 
given in terms of a high and low value around the maximum likelihood value.  The prediction is 
given in terms of an 80% envelope, i.e., being in between the high and low values 80% of the 
time.  In addition, the confidence level in the prediction is 95%. 
 
 

410

420

430

440

450

460

470

480

490

3/12/82 4/9/82 5/7/82 6/4/82 7/2/82 7/30/82 8/27/82 9/24/82 10/22/82

DATE

HISTORY DATA FUTURE PREDICTIONS 

TWELVE (12) WEEK AHEAD PREDICTIONS

ENVELOPETESTS  1/30/02

Weekly Purchases
($Thousands)

T T + TPT - TB

LOW PRED HIGH ACTUAL

T + τ

 
 

Figure 3-3.  Example of a twelve step ahead prediction. 
 
 
 Every time a prediction is generated, the accuracy is determined by comparing the 
predicted value with the actual.  This is done over a looking back horizon as described in [6].  In 
this example, the looking back horizon used is 52 weeks as shown in Figure 3-4.  If 80% of the 
points lie within the envelope, the envelope statement is satisfied for that step.  Every time we 
take a step, we compute this measure.  The envelope statement must be correct 95% of the time. 
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Figure 3-4.  Measuring the accuracy of a twelve step ahead prediction. 
 

 
 To derive a probability statement, we must be referring to a distribution.  The distribution 
may be implicit or explicit.  We need not know the shape, it may be unknown.  But we must 
have statistical data relative to the probability statement.  If our predictions are tested over time, 
then we will be within our specified 80% limits 95% of the time.  If the system we are dealing 
with is nonstationary (changing with time), then we may also want to specify the looking back 
horizon used to perform our tests. 
 
 When people in a data poor environment consider these definitions, they question the 
definition.  As an example, when trying to forecast market demand for a new product with no 
history, one must consider other options.  Usually one resorts to stationary statistical approaches.  
These approaches assume that a population exists, as do all standard statistical tests.  This is not 
wrong.  It is simply not a dynamic prediction as defined here.  This problem is addressed in 
subsequent sections. 
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UNDERSTANDING THE BEHAVIOR OF COMPLEX SYSTEMS 
 
 Since our interest is predicting the responses of complex systems, we want to take 
maximum advantage of the information we have about those systems.  As illustrated in the 
weather prediction problem described above, having sufficient observable data on the system is 
only part of the problem.  Making best use of that data is typically a significant problem for 
complex systems.  This problem is solved through representation of system behavior, i.e., how 
the system processes the data. 
 
 The representation may be very simple or very complex.  What counts is the resulting 
accuracy of prediction.  This typically depends upon the understanding by one or more people of 
the internal workings of the system, and the translation of that understanding into some form of 
representation or model. 
 
 
Representing Complex Systems 
 

 Figure 3-5 illustrates a complex system with observable inputs and observable outputs.  
For the convenience of describing the behavior of this system, we will assume that inputs are on 
the left hand side of a box, and outputs on the right hand side of a box. 
 
 

COMPLEXMODELS 1/14/03

INPUTS

OUTPUTS

INTERCONNECTED
TOOLS

A

B

C

D

E

F

G

H

I

J

 
 
 

Figure 3-5.  A system composed of multiple subsystems. 
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 The system in Figure 3-5 is composed of multiple subsystems, A, B, C, etc., each of 
which may be complex, i.e., contain multiple sub-subsystems.  If each subsystem has delays 
between the time an input occurs and the time a response is produced, then outputs from the 
overall system will be delayed by the sum of the subsystem delays encountered when starting at 
the input. 
 
 Note that subsystem C’s output feeds into E, and that E has an output that feeds back into 
C.  This is a feedback loop.  Subsystem D participates in multiple feedback loops.  Systems with 
feedback loops typically contain elements with nonlinear behavior to preserve stability.  The 
combined effects of feedback and nonlinear elements typically require detailed modeling to 
produce accurate predictions.  Assumptions based upon linearity typically do not apply, making 
the modeling task much more difficult. 
 
 
Nonlinear - Nonstationary Systems 
 
 Approaches to solving the multi-step prediction problem have been described by many 
authors, see for example [3], [4], and [5].  However, these approaches depend upon algorithms 
that find patterns in time-series data.  It has been shown by Cave, [6], that these approaches 
depend upon stationarity, or quaisi-stationarity in the data and can be represented by 
homogeneous models.  In the case of nonstationary systems, e.g., those driven by nonstationary 
external forces, or those with internal structures that are nonstationary, approaches using 
homogeneous models will not provide predictions with consistent accuracy, and the methods 
used to measure accuracy may be questionable. 
 
 Two difficulties exist when interpreting literature describing approaches to prediction.  
One is the method used to test and compare prediction accuracy.  The other is the use of terms, 
e.g., nonlinear and nonstationary.  Both of these are defined in [6], and summarized here. 
 
 Prediction accuracy, or prediction error, can only be tested using data the modeler has 
not seen.  If a modeler uses knowledge of “future data” to identify elements of a model, then 
measures of accuracy that use this same data are considered model error, not prediction error. 
 
 Certain types of nonlinear systems cannot be transformed into linear systems by 
manipulation or reordering the equations.  In these cases, the test for linearity may fail, but one 
can manipulate the equations defining the system and produce a linear representation.  We 
consider these quaisi-linear cases to be linear in nature.  Similarly, nonstationary systems can be 
transformed into stationary systems.  Again, we consider these quaisi-stationary cases to be 
stationary in nature. 
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4. PERTINENT CONSIDERATIONS 
 

Future survival depends upon the speed with which one can deal with increasing complexity. 
 
 
THE IMPACT OF SPEED AND COMPLEXITY ON SURVIVAL  
 
 The things we take for granted today would have boggled the minds of people just 100 
years ago.  Looking back 1000 or 10,000 years is awesome.  Which way would any of us prefer 
to live?  Who is better prepared to survive?  The answer to the first question is generally obvious.  
The answer to the second requires more consideration. 
 
 Grade school children use radios, TVs, CDs, calculators, and computers.  They know the 
difference between a tape and a DVD.  But looking at the total population, how many of us 
understand how these complex pieces of equipment really work?  Of those, how many would 
know how to design or build any of these items? 
 
 How many people know how to make a fire without matches?  What percent of the 
population today could survive if stranded alone on an island?  These answers will likely depend 
upon where we take our samples, e.g., from New York City versus the jungles of Vietnam or the 
mountains of Afghanistan. 
 
 Survival is the number one issue here.  The U.S. is learning that there are many faces of 
survival.  The days of firearm versus bow and arrow are long past.  A high speed aircraft with 
smart missiles may not help preserve our own infrastructure when attacked by terrorists.  The 
approach to survival is taking on a different meaning than historic war.  The enemy situation is 
becoming much more complex.  Accurately predicting what an adversary may do depends upon 
how much time he has to think, communicate, and take action.  It is time to redefine the problem 
in light of this increasing need to deal with speed and complexity as we endeavor to survive. 
 
 
Dealing With Increasing Complexity 
 
 Anyone who is familiar with the history of mathematics knows the motivations that led to 
the progression of numbers.  It started with “whole numbers” or integers, and progressed to 
signed integers, then to fractions and rational numbers.  This progression continued to real 
numbers, and then to imaginary and complex numbers.  Each step took us into a more complex 
realm - not by pure imagination, but by necessity.  An appropriate expression from engineering 
is “Necessity is the mother of invention”. 
 
 But there is more to this progression than just the increase in complexity.  Each of these 
extensions to mathematics is still referred to as a number.  And each encompasses the prior.  A 
simple whole number is a subset of a complex number.  More importantly, many of the laws and 
transformations still apply as we move up the scale of complexity.  Their interpretations are 
simply extended to be more general.  This helps us to deal more easily with great leaps in 
complexity. 



 

13 

Selecting The Most Convenient Coordinate System 
 
 As we continue to move up the food chain of numbers and mathematics, we can group 
numbers into vectors.  The position of a body in space can be described by three numbers 
depending upon the coordinate system we choose.  And we learn in higher levels of mathematics 
and physics, particularly in electro-magnetic theory and partial differential equations, that 
problems can be solved more easily if we select the right coordinate system.  For example, when 
a particle moves in a spherical orbit, it is much easier to describe its motion in spherical 
coordinates.  Cartesian coordinates will work, but it takes longer to solve the problem.  As a 
student doing homework or taking a test, one is looking for ways to beat the clock.  Students who 
know how to apply these principles get homework done much faster.  More importantly, they get 
answers to test problems that their competition may not finish. 
 
 Selection of the most convenient coordinate system is typically taught under the topic of 
separation of variables.  One learns that the separation principle can be used if the variables 
form a linearly independent set.  The property of independence can be verified using specified 
tests.  The concept of choosing the best coordinate system and the property of independence are 
the important principles one can apply when dealing with complexity in a constrained time 
environment.  We will make use of these concepts. 
 
 Einstein introduced the use of tensors to deal with the increasing dimensions of time, 
velocity, and acceleration.  Control system engineers moved further to deal with state vectors in 
the state space framework to account for the many degrees of freedom required to characterize 
complex dynamic systems.  The state space framework has been shown to be the most general 
representation of a dynamic system, see [19] and [23].  Providing a framework for problem 
description was not the only benefit of the state space approach.  It also afforded faster solutions 
to problems that could run for days on the computers of the time. 
 
 
FRAMEWORKS FOR REPRESENTING COMPLEX DYNAMIC SYSTEMS 
 
 In a competitive time-constrained environment, time (speed) is the most important factor.  
If two sides develop the same capability, the one that gets there first is likely to be the one that 
wins.  When building tools to help people solve design problems or make complex planning 
decisions, time enters into the picture in at least two major ways. 
 

• Development Time - the time it takes to develop the tool 
 

• Solution Time - the time it takes to get a useful solution from the tool 
 
 One can imagine a great tool for solving a problem.  But one must answer the question - 
can we get it built in time to accomplish our goal?  Or, more importantly, will it produce valid 
answers fast enough if we get it built?  Of course cost and risk are also major factors.  However, 
time is usually of the essence. 
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Automating The Representation Process 
 
 In the early 1960’s, electronic circuit designers developed automated tools for solving the 
complex systems of nonlinear differential equations required to represent digital waveforms in 
the time domain.  These Computer-Aided Design (CAD) tools allowed engineers to describe 
large networks topologically and to write FORTRAN-like equations describing nonlinear 
functions.  Programming skills became unnecessary. The code needed to generate and run 
simulations of very large networks was generated automatically.  This afforded a huge leap in 
design productivity.  It enabled the design of huge complex networks needed for integrated 
circuit design. 
 
 CAD system development became a business for the principals of PSI.  Two systems 
were developed, one for continuous system modeling, e.g., for digital circuit design, and one 
using a discrete-time framework for the design of signal processing systems.  The second used 
sampled data principles to reduce computation time. An underlying state space framework 
supported both products. 
 
 For large networks, the number of state variables ran into the thousands.  Solving worst 
case design problems involved multiple optimization runs of thousands of simulations.  Each 
simulation had to solve the optimal control problem, involving thousands of nonlinear 
differential equations.  Speed and accuracy were the driving forces in designing these systems.  
If it took a computer days to get a design, only one or two test points were produced in a week - 
not very attractive. 
 
 
Capitalizing Upon General Principals 
 
 State space was used because it provides the most convenient framework for solving any 
type of dynamic problem in the time domain.  The general form of the solution holds for any set 
of independent state variables.  This allowed for the development of generalized methods, e.g., 
optimal sparse matrix inversion and describing functions, to solve the nonlinear problem fast 
while ensuring algorithm convergence.  The end result was to solve huge problems in minutes.  
However, this approach required formulating problems in a mathematical framework. 
 
 
Facing Totally New Problems 
 
 In PSI products prior to 1982, models were formulated mathematically, i.e., using 
vectors, matrices, and systems of equations.  This approach allowed the solution to be derived 
automatically and solved very fast.  By 1982, this approach was recognized to have severe 
limitations when modeling communications or control systems involving algorithmic decision 
processes.  Clients wanted to describe their problem using more general state concepts, and be 
able to write conditional statements within the system of equations.  It was determined that these 
types of decision processes could be handled using the discrete event approach originally 
developed by Gordon in 1961, see [8] and [9]. 
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A MORE GENERALIZED PROBLEM FORMULATION 
 
 In 1982, PSI decided to study the problem of building a discrete event simulation 
environment.  The motivation to build a new tool was very high because of the requirement for 
writing decision algorithms into the models. Users wanted to break up the system of equations 
and embed English-like conditions and rules, e.g., 
  

IF THE MESSAGE_TYPE IS CONTROL, THEN … , 
ELSE IF MESSAGE_TYPE IS DATA, THEN …  . 

 
 Additionally, complaints about the inability of existing discrete event simulation 
products, e.g., GPSS, SIMSCRIPT, and SLAM, to solve our client’s problems.  The major 
complaints were lack of scalability (inability to deal with increasing complexity) and excessive 
simulation run-times.  But these complaints imposed caution.  This led to an investigation of the 
competing product deficiencies as well as an analysis of how to formulate the basis for general 
solution. 
 
   At first it appeared difficult to derive a mathematical framework to support this new 
requirement.  This caused concern about our ability to justify design decisions without a formal 
perspective on the problem.  We appeared to be leaving the world of mathematics.  Time steps 
were determined by the modeler in terms of scheduled events.  This led to the development of a 
state space definition of discrete event systems.  A description of this is provided in the Sections 
below entitled Concept Of A Generalized State Vector and State Space Definition Of A GSS 
Model.  The differences and likenesses of mathematical and rule oriented formulations are 
compared in Simulation Of Complex Systems, [10]. 
 
 
Facing The Speed Issue 
 
 Because of length of competing product running times (some critically needed 
simulations were taking 5 to 7 days to run a 2 hour scenario), we were pushed into the desire to 
have the system run on a parallel machine.  This was fortunate since PSI had experience in this 
area.  Furthermore, PSI’s experience in computer design, and the knowledge of how chips were 
evolving to support fast computing methods led to an approach that would take advantage of 
future hardware technology when it became available. 
 
 The need for parallel processing imposed the requirement that two or more processes 
would have to run concurrently if they were to run concurrently on separate processors.  This 
implied that concurrent processes had to be independent.  The property of independence implied 
that the processes shared no data.  This led to the decision to separate data from instructions so 
the independence property could be tracked.  Our design called for a connectivity matrix to 
determine what processes shared what data.  Then when allocating processes to processors, the 
connectivity matrix would be used to determine if a process could run concurrently with those 
already running. 
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 The separation of data from instructions provided very significant additional benefits.  
First, it allowed capitalization on the concept of independence.  By limiting access to specified 
data structures, models could be made independent.  This led to a decomposition of the 
simulation database into separate data structures - defined as resources in GSS.  Instructions are 
grouped into sets of rules defined as processes.  Resources and processes are grouped into 
elementary models.  Elementary models are grouped into hierarchical models.  This is illustrated 
in Figure 4-1, which contains a model of a local telephone system with PBXs connected to a 
local switch.  The resources (data structures) are contained in the ovals, and the processes 
(instructions) are contained in the small rectangles.  These can be edited directly as shown in the 
boxes. 
 
 In GSS, the interconnection of processes and resources is done graphically using icons 
and lines.  This provides the ability to produce an engineering drawing of the architecture of a 
model, where lines connecting processes to resources determined what processes had access to 
which resources.  Models can be connected to each other by connecting a process in one model 
to a resource in another.  Independence of models can be visually inspected by looking at the 
number of lines connecting them. 
 
 
The Concept Of A Generalized State Vector 
 
 Separating data from instructions clarified the meaning of the state of a model or 
simulation.  It was defined by the state of all of the resources in that model or simulation.  This 
led to the concept of a generalized state vector.  One could look at the state of a simulation as 
one big state vector comprised of all the resources in that simulation.  Alternatively, a simulation 
was partitioned into a set of sub-states corresponding to the resources or subvectors. 
 
 This approach allowed us to reuse many of the concepts from the state space framework.  
For example, the simulation state vector as used in GSS is considered to represent a generalized 
coordinate system.  It is up to the modeler to come up with the best set of states to make the 
problem easy to solve.  This implies selecting the set of resources that simplify the 
transformations of state that represent the dynamics of the system.  These transformations are 
embodied in the processes.  When a process runs, it starts with the initial state of the attached 
resources and takes them to the next state. 
 
 This is no different from the problem of picking the best set of variables or coordinate 
system to simplify a set of partial differential equations.  As indicated above, courses that cover 
problem solving in the applied sciences, e.g., physics and engineering, stress that choice of a 
coordinate system is the key to making a problem easy to solve.  In GSS, one selects the best 
breakout of resources (state subvectors) to simplify the processes (transformations of state). 
 
 We expanded that concept to the generalized state vector, one that consists of general 
information, not just variables that take on numeric values (be it integer, real, or complex).  In 
particular, we consider that a GSS resource is equivalent to a data vector containing states such 
as RED, YELLOW, and GREEN.  The data can be English words or character strings, as well as 
numbers.  A generalized state vector may consist of one or more subvectors, i.e., GSS resources. 
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 Figure 4-1 Telephone Network Models In GSS 
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 With the above in mind, consider that a GSS simulation consists of a very complex 
simulation state vector (the simulation's data base) that changes as processes are invoked.  At 
any instant of time, the simulation state vector contains the values of all the resources in the 
simulation.  It must also contain the simulation queue, the simulation clock, and the real-time 
clock and random number generator seed if used.  External files are considered inputs to an 
inhomogeneous model as described in [6], and are not part of the model's state vector. 
 

 
State Space Definition Of A GSS Model 
 

 A GSS model only has access to a subset of the simulation state vector when a process in 
that model is running.  We will call this the model state vector.  A subset of the model state 
vector contains those resources that are actually part of the model.  The state space representation 
of GSS is shown in Figure 4-2.  The state vector that a model has access to consists of the 
following items and their corresponding information elements: 
 

• ACCESSIBLE RESOURCES - The information contained in the resources that a 
model has attached to it.  Note:- The SHARED resources may or may not reside 
within the model! 

 

• SIMULATION QUEUE - The entries in the queue, including the indices it uses 
when it's processes are scheduled. 

 

• SIMULATION CLOCK - The time of the simulation clock, including priority, if and 
when it schedules another process. 

 

• REAL TIME CLOCK - The value of the real-time clock if and when it uses the real 
time clock. 

 

• RANDOM NUMBER GENERATOR - The value of the current random number 
generator seed if and when it uses the random number generator. 

 

GSS-STATE  11/9/02

INITIAL
STATE

VECTOR

RESRC-1
       .
       .
       .
RESRC-N
S-QUEUE
S-CLOCK
R-CLOCK
RANDOMS

TERMINAL
STATE

VECTOR

RESRC-1
       .
       .
       .
RESRC-N
S-QUEUE
S-CLOCK
R-CLOCK
RANDOMS

RESRC-N     - the GSS resources that are accessible to the model's processes
S-QUEUE     - the simulation queue entries used in the schedule command
S-CLOCK     - the simulation clock time
R-CLOCK     - the real-time clock time
RANDOMS   - the random number generator seed

GSS
MODEL

PROCESSES

 
 

Figure 4-2.  State space representation of GSS. 
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 GSS processes are scheduled based upon the logic within itself or other processes.  When 
a GSS process runs, it can schedule itself or other processes at specified times in the future, or at 
the current time.  GSS processes run in zero simulated time.  At any time, the state of a model 
depends solely upon its state vector.  When a process in a model runs, its terminal state, i.e., the 
value of its substate vector - when it passes control back to GSS - depends solely upon its initial 
state, i.e., the initial value of its substate vector, and the rules within the process.  When 
processes in another model share a part of the state vector of a given model, then any future state 
of the given model is, in general, dependent upon the rules in the other model, since they can 
change the given model's state vector. 
 
 
Analogy To Symbolic Models Using State Space 
 
 The state space representation of a GSS model, Figure 4-2, is analogous to a set of 
differential equations that represent the state of a dynamic system at any instant in time.  All 
future states are represented by the equations of motion in state space notation, and the initial 
conditions, reference Gelb, [23].  Electrical engineers have become accustomed to a graphical 
representation of the differential equations of electrical circuits, using interconnected icons of 
resistors, capacitors, inductors, generators, transistors, transmission lines, etc., refer to 
Figure 4-3.  Such a drawing defines the differential equations of motion of the changes in 
electrical voltages and currents in the circuit.  Given the initial conditions, the state of the circuit 
is defined for all time thereafter.  In other words, the total dynamical description of the network 
is defined by the symbolic network. 
 

ELECNETW - 8/1/01  
 

Figure 4-3.  Iconic representation of an electrical network. 
 
 
 In GSS, the interconnection of resources and processes, as shown in Figure 4-1, is 
analogous to the electrical circuit drawing in Figure 4-3.  Each has its corresponding rules and 
storage underlying each primitive element.  In the case of electrical circuits, there are constituent 
equations that describe the changes in energy storage in differential form for each primitive icon.  
Representation of any system element must conform to this form of change. 
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 In the case of GSS, sets of rules operate on sets of attributes (contained in data structures) 
to define the elementary change relationships in a model.  Using GSS, the engineering drawing 
shown in Figure 4-1 and the underlying rule and data structures, define the total state of the 
simulation at any point in time after the initial conditions.  This is known as the generalized state 
space framework. 
 
 
Choosing the Most Convenient Reference Frame 
 

 As described above, the generalized state space framework, as implemented in GSS, 
supports the representation of discrete event systems as well as discrete time and continuous.  
Figure 4-4 illustrates that generalized state space provides the underlying framework for 
representing dynamic systems. 
 

GENERALIZED STATE SPACE FRAMEWORK

CONTINUOUS
SYSTEMS

DISCRETE
TIME

SYSTEMS

DISCRETE
EVENT

SYSTEMS

GSS-STATE  5/11/03  
 

 
Figure 4-4.  Generalized State Space: 

         - an underlying framework for representing dynamic systems. 
 

 
 The difference between representations of a system's dynamics is a matter of convenience 
(or maybe survival).  A particular representation can be selected to support the economics of 
analyzing or predicting specific system behavior.  If a system is conveniently represented by a 
set of differential or difference equations, then one of those representations might be best.  If the 
system is more easily described by sets of rules operating on sets of attributes, then that 
representation should be chosen. 
 

 Since the advent of the digital computer, people have moved from analytical methods for 
integrating differential equations to numerical methods, especially when the systems represented 
are either nonlinear or nonstationary.  Fast numerical algorithms for solving stiff nonlinear 
systems typically use complex heuristic approaches.  What is interesting is that these approaches 
can be implemented implicitly using GSS rule and attribute structures.  As computers provide 
significantly greater memory and speed advantages, the space for solving problems is growing, 
alleviating restriction to numerical methods for solution, and moving rapidly toward heuristic 
rule based approaches using complex data structures.  These approaches are compared in 
Simulation Of Complex Systems, [10]. 
 

 Having selected GSS as the overall framework, the analogy then becomes one of 
selecting the best set of information vectors (GSS Resources) to represent the system attributes.  
Depending upon how the resources are selected and structured, the rules (GSS Processes) may be 
much more simple to understand, build, and modify.  This is determined by the independence 
properties of the architecture, i.e. the interconnection of resources and processes - not the code! 
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Reusability Analogy 
 
 In the case of electrical circuit modeling, a transistor model may require a significant 
effort to build and validate.  Once completed, that model can be shared in many different 
simulations, as well as hundreds of instances used in a given simulation.  Similarly, for models 
built using GSS.  Development and validation may require significant effort, whereupon a given 
model can be shared in many different simulations by different organizations, as well as appear 
in hundreds of instances in a given simulation. 
 
 Complex models of electrical elements, such as transistors and transmission lines, may be 
made up of the primitive elements, and represented by higher order symbols.  One can push 
down on these symbols and bring up the primitive representations that show all the detail 
underlying the model.  More complex networks, such as groups of digital circuits in the form of 
gates and flip-flops can be represented using another level of hierarchy.  In this manner, 
complexity is pushed down to the level that one wants to see it, and removed from view when it 
only serves to cloud the picture.  This aids in both the understandability and reusability of a 
model. 
 
 Similarly, one can represent complex models in GSS using a hierarchy of models, 
wherein higher level icons are used to represent the highest level of a model, and one can push 
down as many times as needed to get to the primitive layer.  In GSS, the primitive layer consists 
of resources and processes.  This also aids in model understanding and reusability. 
 
 
An Alternative Approach To Generalized State Space 
 
 In 1987, Ramadge and Wonham, [11], described the need to use English words as states 
in a control system.  They introduced the notion of alphabets to deal with these non-numeric 
states.  Their finite-state machine approach is somewhat different than that of the generalized 
state vector, particularly in the implementation of models describing complex systems.  
However, it appears that the underlying effect of these two concepts is essentially the same.  
Although there are no journal publications on this method, the generalized state space approach 
is documented in copyrighted GSS User’s Manuals and PSI books on model development going 
back to 1982 and 1983.  It is believed that these approaches were conceived independently. 
 
 
THE RELATION BETWEEN INDEPENDENCE AND DECOMPOSITION 
 
 Most systems, such as sensors, are typically decomposed into elements that operate 
independently.  These elements are then coupled to other elements via information exchanges.  
Figure 4-4 illustrates this situation.  Sensors G1 and G2 are controlled by ground station G.  
Sensors B1 and B2 are controlled by ground station B.  In this example, the sensors are 
independent of each other.  G1 and G2 are tightly coupled to ground station G.  B1 and B2 are 
tightly coupled to ground station B.  Ground stations G and B are independent, but tightly 
coupled to central control J. 
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 This organizational structure, having objects independent from a communications and 
control standpoint, has to do with productivity and survivability of organizations.  This will be 
discussed more in the next section.  Our point here is that, given such a structure, it best modeled 
accordingly.  The flow and processing of information is modeled most accurately (and easily) by 
decomposing the overall model into submodels that represent the actual structure, and relative 
independence, of the sensor system. 
 

SENSOR G1

SENSOR B2

SENSOR B1

SENSOR G2

GROUND
STATION G

GROUND
STATION B

CENTRAL
CONTROL J

G OBJECTS

B OBJECTS

DECISIONS  10/16/02  
 

Figure 4-5.  Illustration of sensor coupling. 
 

 
 In general, two objects may be organized to be: 
 

• Independent - no coupling 
 

• Loosely Coupled - only small behavioral changes will occur based upon information 
exchanged 
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• Tightly Coupled - large behavioral changes can occur based upon information 
exchanged 

 

Organizational Decomposition And Control 
 

 Just tasking and tracking a single sensor can occupy a person full time.  That person may 
derive information that is passed up the hierarchy to fuse with other data sources.  Currently, 
many of the information exchanges are through human interaction.  However, automation of 
both the systems and their interactions is a high priority for the Air Operations Center (AOC). 
 
 As problem complexity exceeds the ability of a single individual, it becomes necessary to 
divide up the work.  This is particularly evident in a time-constrained situation.  This is certainly 
the case in an AOC where hundreds of people occupy a single 8 hour shift, and three shifts 
operate 24X7. 
 
 Looking at Figure 4-5, let’s consider some of the problems encountered in human 
organizations.  If the organization at level 4 is representative, there are 155 people under the top 
(level 1) manager.  If everyone worked in one spot, with everyone trying to talk to each other 
simultaneously, not much would get done.  In the reverse case, if the top manager had to talk to 
everyone to make every decision, productivity would also be very low. 
 
 

LEVEL 1

LEVEL 2

LEVEL 3

LEVEL 4

DECISIONS  8/26/02  
 
 

Figure 4-6.  Illustration of organizational coupling. 
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 There are people today that resist any form of control, and for whom organizational 
hierarchies are distasteful.  These people attempt to sidestep the paradox that more than one 
person can have control at a time.  This is the antithesis of leadership.  These people are likely 
not operating in an organization in a competitive environment.  When survival is at stake, these 
dreams disappear.  Someone must have control.  This does not imply that control cannot be 
distributed.  This is done by distributing and delegating authority over specified elements in an 
organization.  This is also done somewhat unconsciously as described by Arthur in [27] 
 
 Figure 4-5 illustrates this principle.  Every leader has a span of control.  If this span gets 
too large, productivity of the organization goes down.  The leaders at levels 1 and 2 have a span 
of control of 5.  Those at level 3 have a span of 6.  This can be higher or lower depending upon 
the type of tasks to be done, and the capability of the people in the organization. 
 
 These organizational issues are not new to the military.  When a decision must be made, 
someone must have both the responsibility and the authority to make it.  Else productivity goes 
down.  It is not by chance that military organizations have clear lines of responsibility and 
authority.  It is because they are the organizations most concerned with survival.  To help remove 
doubt, they wear symbols on their uniforms to signify their rank. 
 
 Organizations that follow rigid rules of independence may be less productive than others.  
There are good reasons to have coupling across organizations for information exchange.  This 
coupling generally excludes control, and is therefore loose.  Actions taken by an element of an 
organization may depend upon information exchanged across the structure as well as from a 
superior element.  These links are normally well defined and approved up the hierarchy. 
 
 There are a number of points to be derived from this discussion regarding military 
organizations.  These have evolved to maximize productivity in a typically scarce resource 
survival environment. 
 

• Military organizations have evolved to be tightly coupled hierarchically, at least 
from a control standpoint, with relatively independent peer operations. 

 

• Productivity increases as individual people or elements focus on specific tasks.  This 
in no way precludes information exchanges, coordination, or teamwork. 

 

• Cross coupling between peer organizations occurs, but is typically loose, resulting in 
actions based upon information exchanges as opposed to exercise of control. 

 

• As the complexity of systems and equipment grows, the role of training in the use of 
specific systems and equipment has increased. 

 

• This holds true for the opposing force as well as one’s own force.  Therefore, people 
involved in intelligence gathering and fusion must be more highly trained in specific 
fields. 

 

• The nature of planning, particularly in the AOC reflects the above bullets.  Specific 
tools have been built to support specific assessment and planning functions. 
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 Government, military, and commercial organizations are constantly hiring consultants 
and performing self-analysis to find ways to be more productive.  Technology advances that 
afford improvements in productivity, e.g., computers, communications, and special equipment, 
are absorbed most quickly in highly competitive organizations concerned with survival.  The 
U.S. military is a successful example of this. 
 
 
Learning And Evolution 
 
 Our focus here is on improvement of the situation assessment and planning functions in 
the military, and particularly in the AOC.  It is hard to envision a small group of people replacing 
the staff of a full scale AOC in the foreseeable future.  It is possible to envision a much more 
productive organization, one that can simulate courses of action (COAs) and corresponding 
Enemy COAs (ECOAs).  This will involve the ability to predict friendly and opposing force 
outcomes with reasonable accuracy over significant time periods with many unfolding events. 
 
 Accuracy of prediction will be a major factor in reducing losses of people and equipment 
while achieving the desired effects.  One path to achieve this goal is to take advantage of the 
learning and evolutionary progress already achieved.  There appears to be a lot to learn from the 
decomposition of military force structures and the corresponding independence of functions. 
 
 
SIZE OF THE PROBLEM 
 
 The concept of boundedness was described in Prediction Theory, [6].  It implies that we 
were concerned with finite time periods, finite sets of data, and bounded values.  In this context, 
finite and bounded meant not infinite.  It meant that certain mathematical properties existed as 
long as numbers did not go to infinity.  It had nothing to do with small.  In addition, it provides 
for state variables represented by real numbers, i.e., they can take on an infinite number of states. 
 
 The concept of boundedness must be contrasted with techniques, e.g., finite state 
machines, that typically depend upon small numbers of state variables for practical implementa-
tions.  Small in this context might imply numbers less than 106 (if all the variables were real, this 
only takes 4 megabytes of memory).  GSS has been used to deal with numbers much greater than 
this in detailed models of communications.  When one provides for platforms, sensors, C2, 
weapon systems, etc., the number of state variables could rise to 1010 (taking 40 gigabytes of 
memory).  We note that the set of values of state variables can be virtually infinite since they are 
real. 
 
 Having modeled complex communication systems, one learns that the devil is in the 
details.  The butterfly effect is alive and well.  Military communications are fraught with highly 
correlated traffic.  One or two target sightings can set off a huge set of events.  The GSS 
schedule queue PSI can support 106 events in at any instant of time.  GSS has already been used 
to model 1000’s of complex radios (e.g., SINCGARS, EPLRS, JTIDS, or JTRS) in a simulation, 
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each with 10 to 100 events in the schedule queue at an instant of time.  These simulations have 
been very accurate at predicting network performance using highly correlated traffic. 
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 One can argue that understanding what is going on in such a complex simulation is 
difficult.  However, with a suitable architecture and sufficient graphics, the number of subject 
area experts required to understand what is going on can be accommodated.  There can be many 
people tied in, concurrently watching results and preparing inputs.  Accordingly, we envision a 
decomposition of the functional architecture much along the lines of the existing functions of the 
AOC - yet fully integrated. 
 
 
DRAWING THE LINE BETWEEN HUMAN JUDGEMENT AND AUTOMATION 
 

 How do we decide what’s best for a human to do versus using a computer to do it?  This 
problem has been addressed for many years in the field of CAD.  One must answer the questions: 
What processes depend upon - or are best left to - human judgment?  Where are the break points 
where computers do better? 
 
 It generally comes down to time.  Given the requirement to achieve a given quality of 
results and objectives, e.g., being able to meet specified accuracy requirements, how much time 
will it take to get from here to there.  To restate what was said above (in Chapter 4), when 
building tools to help people solve design problems or make complex planning decisions, time 
enters into the picture in at least two major ways. 
 

• Development Time - the time it takes to develop a tool 
 

• Solution Time - the time it takes to get useful solutions from a tool 
 
 There is no fixed answer.  Both of these times depend upon the state of technology.  
However, there are general principals that apply when trying to decide upon an approach.  These 
principals assume agreement upon the development time and solution time requirements. 
 
 Figure 4-6 provides an illustration of how the level of automation achieved tends to grow 
in various applications.  Some applications have achieved a high degree of automation quickly.  
These tend to have a high degree of rote functions.  Some have to wait for technology to catch up 
the be practical.  Others have clear limits in terms of % automation, at least with foreseeable 
technology. 
 

% AUTOMATION

TIME (YEARS)

APPLICATION 1

APPLICATION 2

APPLICATION 3

PAST FUTURE

?

COMPLEXMODELS 3/24/03

 
 

Figure4-7.  Level of automation achieved (past) and predicted (future) for various applications. 
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5.     STOCHASTIC NATURE OF THE PROBLEM 
 
 

 There are various levels of planning in a real battlespace.  For example, one may have to 
determine the “best” approach to moving troops or supplies from one location to another.  This 
can be treated as a classic transportation problem.  Given the knowledge of available 
transportation facilities, air, sea, and ground routes, and the myriad of other factors affecting the 
time and energy required to complete the move, one can apply standard techniques, e.g., Linear 
Programming (LP), to come up with the best solution.  But is best good enough? 
 
 
Dealing With Variations 
 
 The LP approach is excellent for coming up with answers to the problem as posed.  
However, by itself, it does not deal with the stochastic nature of such a problem.  In reality, every 
attribute can be subject to variations.  In the transportation problem, these variations can be due 
to traffic, weather, breakdowns, etc.  These variations can be taken into account in various ways.  
For example, traffic may be predictable based upon day-of-week and time-of-day.  Even so, 
traffic can get tied up due to special events.  The time to get from point A to point B can be 
adjusted by a traffic variable.  The traffic variable can be a function of the calendar and clock.  
Actual traffic can also vary around a mean value due to effects that appear random, and are 
therefore unpredictable.  These variations must be accounted for when determining whether the 
solution meets the time constraints. 
 
 To generalize the approach to characterizing traffic, each route may have variations in 
time that can be broken into two categories, those that are predictable based upon observable 
attributes, and those that appear to be random.  If we can develop relationships between the 
predictable variations and the observable attributes, they can be applied to adjust the mean value.  
This serves as additional information to reduce the prediction error. 
 
 There are approaches for characterizing the effects due to the random variations.  The 
approach used most often is Monte Carlo Analysis.  In this case, distributions are postulated for 
all of the random variations.  Then a simulation is run with random samples drawn from these 
distributions each time an event occurs requiring a value for the variation.  Depending on the 
scenario, one runs enough simulations to characterize the distributions of the resulting measures 
of performance.  For example, total time to move the troops from A to B may involve many 
traversals of the many routes.  When these individual traversals are simulated, they are subject to 
the variations determined by the random samples.  If a new random number seed is used for each 
simulation, different results will occur for the total time measure. 
 
 After enough simulations are run, a histogram or other measures of these times can be 
used to characterize the distribution of total time.  Consider Figure 5-1 as the resulting 
distribution representing the time to move troops from A to B.  If the simulations took into 
account all of the variations present in the real battlespace, then one can derive a probability 
statement about the range of time.  For example, if Tmax is 20 hours, and the area under 
distribution D1 up to Tmax is 95% of the total, one can state that troops can be moved from A to 
B in 20 hours with a 95% probability. 
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Figure  5-1.  Example of a measure of performance characterized by a distribution. 

 
 
 The probability statement comes directly from a mathematical calculation based upon the 
distribution.  If the distribution represents the real world perfectly, then the probability statement 
is correct.  One must ask how accurately the distribution represents the real world.  This is 
answered by providing a confidence level in the distribution relative to the calculations being 
used.  This is also described in [6].  In addition, there is a more direct way to get to a solution 
without using Monte Carlo.  This is described below in Accounting For Constraints. 
 
 
Dealing With Large Decision Trees In Time 
 

 Military planning requires a large number of decisions to be made over time.  In many 
cases, large numbers of decisions must be made to start or continue an operation before any 
results can be seen.  Most of these decisions involve selection of an approach from many 
choices.  Each of these decisions lead to the next decision level where more selections must be 
made.  Just considering the sequence of decisions coming from each level in the command and 
control hierarchy, one could envision a very complex picture of this process similar to that in 
Figure 4-5. 
 

 As results start to come in, decision makers, with the help of their staffs, must start to 
characterize the adversary’s changes in capabilities, plans and decision processes.  At each step 
along the way, at different levels in the decision process, the characterization of effects achieved 
can be represented by a distribution as in Figure 5-2. 
 

 Although Figure 5-2 looks like a normal distribution, a large number of variations that 
one may be faced with are not characterized.  To use a Monte Carlo approach, or the worst case 
design approach defined below, the distributions can be unknown but bounded.  If the Tmax 
boundary in Figure 5-1 is known, i.e., it is the 95% point, that’s all we need to know.  We need 
not know the shape of the distribution.  But in many cases we don’t even know that. 
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Figure  5-2.  Desired effects characterized by a distribution. 

 
 
 Considering all of the possible variables and characterizations, one may feel 
overwhelmed by what would appear to be unpredictable chaos.  But operations do unfold 
according to rules.  The rules may be changing, but some level of rules and coordination is 
required to achieve a desired level of effectiveness. 
 
 
Accounting For Constraints 
 
 The need for rules and coordination in operations imposes constraints on behavior.  This 
need increases with the tempo of operations.  In addition, real world systems are nonlinear, 
imposing additional boundaries of constraint.  Behaviors never get to infinity.  Something breaks 
down first.  In addition, there are different levels of conflict and corresponding missions, and 
these can be bounded in terms of their outcomes in time.  Figure 5-3 illustrates the envelope 
generated by successive distributions in time. 
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Figure  5-3.  Prediction of effects characterized by a distribution envelope. 

 
 
 Analyzing the potential manner in which events unfold in time, and the way they 
contribute to variations in potential outcomes, provides an improved understanding of how one 
may want to proceed to reduce the risk of unnecessary losses.  Commanders can lay down 
operational constraints, e.g., this mission will not expend more than some specified amount of 
fuel or ammo; or, this flight will concentrate on that target.  All of these constraints serve to 
bound the problem. 
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6.     FINDING FEASIBLE SOLUTIONS 
 
 Finding feasible solutions implies finding feasible COAs or sub-COAs.  These are 
actually trajectories in time.  We will start by looking at a single time point. 
 
 
OBJECTIVES AND CONSTRAINTS 
 

 Problems of this nature can be defined in terms of objectives and constraints as described 
in the linear or nonlinear programming literature.  In practice, the constraints are usually more 
important than the objective function in that they must be satisfied to provide a feasible solution.  
This translates to a COA that satisfies prescribed constraints to be acceptable.  Examples of such 
constraints are: risk of casualties or loss of life; limits on platform availability; limits on 
personnel; limits on ordnance, limits on fuel, limits on time, flight path restrictions, jamming 
restrictions, frequency allocation restrictions, etc.  These are referred to as hard constraints, in 
that a violation of any such constraint renders the COA unacceptable (the solution infeasible). 
 

 The constraints of interest here can be mapped into the parameter space of vector 
variables, V, that determine the constraint surfaces.  Constraints can be posed in terms of the 
variables in this space such that a constraint function H is positive when the constraint is satisfied 
and negative when it is violated.  Figure 6-1 below illustrates such a mapping for four 
constraints. 
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Figure  6-1.  Hard constraints defined by surfaces Hn(V) = 0. 
 

 
 By visualizing the surfaces Hn(V) = 0 (the curves bounding the region R in Figure 3), 
one can interpret this geometrically.  A solution, Vo, is defined as feasible if it satisfies all the 
constraints.  If all points inside the region R ensure that all of the values of the Hn are greater 
than zero, then R is defined as the feasible region, bounded by the constraint surfaces Hn(V) = 0. 
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 We note that this illustration is for an instant of time.  In fact, Figure 6-1 is just a 
snapshot from a trajectory in time, showing only the spatial parameters.  We will limit our 
discussion here and deal with trajectories in time in a later section. 
 
 As the solution vector, Vo, moves outside the region R, at least one of the constraints is 
violated.  The feasible region appears large in Figure 3.  However, this is done to illustrate the 
definitions.  In the practical problems of interest here, the solution vector will depend upon many 
parameters that affect at least one of the constraints.  For example, a constraint on the probability 
of being engaged by an IADS missile will depend upon where one travels in x, y, z space.  A 
constraint on fuel will depend upon altitude and distance traveled, a function of the way points of 
a flight path in x, y, z.  It will also depend upon the position of refueling tankers - a different set 
of parameters.  The dimension of the space can be quite large. 
 
 In addition, the constraint surfaces can be very nonlinear functions of the parameters.  In 
a large parameter space, it may take time to develop the complete set.  There have been studies 
of such constraint surfaces for similar problems, and it is known that they can take on exotic 
shapes.  This can make the feasible region very small.  Depending upon how the problem is 
posed, it is not unusual for it to be non-existent. 
 
 
ACCOUNTING FOR PARAMETER VARIATIONS 
 
 To further complicate the problem, the actual values of parameters will vary.  For 
example, a tanker may have been tasked to remain in a certain small area, but circumstances 
forced it to go to another area.  Targets may move before they’re engaged.  IADS radar coverage 
may not be known precisely.  All of these will cause a flight to change its way points.  This 
implies that we only know the value of the solution parameters in time to within a distribution.  
We may not know the shape of the distribution, and may only have some knowledge of its 
bounds - in terms of percentile limit values.  This is the classic worst-case design problem.  We 
will not delve into the details here, but will outline it and provide references for detail. 
 
 Figure 6-2 illustrates what happens when these parameter variations are taken into 
account.  If Vo is the selected (nominal) solution, and we apply all of the possible variations, T, 
out to a selected set of limits on their distributions of each parameter, a region ro will be 
described as shown.  Thus, ro is the region of all possible values of the actual solution, V.  This 
implies that all of the points in ro must remain in R, else a constraint will be violated. 
 
 This problem has been solved using Computer-Aided Design (CAD) techniques, see [14], 
[15], [16], [17], and [18].  If for each point on a selected constraint boundary we allow the T 
vector to take on all of its possible values, we will describe a manifold about the original 
constraint boundary.  This is shown in Figure 6-3 with two curves on either side of the original 
boundary of R. 
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Figure  6-2.  Possible variations of the solution due to parameter variations. 
 
 
 
 
 
 

Parameter space V0

CONSTRAINTS  8/2/02

R
T = 0   (boundary of R*)

T = T *   (boundary of R)

V0

R*

 
 
 

Figure  6-3.  Transforming the constraint boundaries using optimization. 
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  Alternatively, for each point, Vo, on a selected constraint boundary we can determine the 
value of T = T* that causes H(Vo + T*) to be most negative.  These values form the inner region 
R* bounded by the surface H(Vo + T*) where T* depends upon Vo.  This approach conveniently 
transforms the original feasible region into a smaller region such that, if the solution Vo falls 
within the transformed region, R*, it will meet the worst case conditions.  This is described in 
further detail in [14]. 
 
 
WORST CASE DESIGN OPTIMIZATION 
 
 A major benefit of this approach is that it supports direct optimization and therefore 
synthesis of a solution that meets worst case constraints.  One avoids the iterative approach of 
finding feasible solutions and then running Monte Carlo analysis to determine if constraints are 
violated.  It is a proven technique that has been used extensively in very difficult design 
problems.  
 
 Before considering optimal solutions, one must further investigate the worst case 
problem, i.e., searching for the feasible region after applying the worst case transformation.  In 
practice, it is not unusual for the transformed feasible region to be null, i.e., the feasible region 
has disappeared.  This implies that the problem as posed cannot be solved without violating one 
or more constraints. 
 
 In this case, one must go back and rethink the problem, and this usually means relaxing 
one or more constraints to get a solution.  One can then look at this solution and determine what 
constraint is hard to meet. Alternatively, with good optimization techniques, this information can 
be produced as a by-product of the feasible search process. 
 
 Before moving on to the optimal control problem in the time domain, there are two other 
difficulties that must be considered when attempting to solve highly nonlinear constrained 
optimization problems.  First, it is not unusual to find multiple disconnected feasible regions.  
This means that the optimization algorithms must be able to seek out these regions for better 
solutions. 
 
 Second, solutions may be unstable.  In the case of a feasible solution, this occurs when 
the solution is very close to a constraint boundary.  This implies that a very small change will 
render the solution infeasible, i.e., one or more constraints is violated.  At this point, judgment 
must come into play.  Either these conditions must be anticipated and accounted for in advance, 
or a decision must be made on the spot.  Again, with good optimization techniques, this 
information can be a by-product of the feasible search process. 
 
 Another form of instability occurs with optimal solutions when the objective function has 
very narrow peaks.  Again, with very small changes in the solution, large changes can occur in 
the value the function being optimized.  In a very nonlinear problem, this can be significant.  All 
of these difficulties can be accounted for and alerted using good optimization techniques.  These 
will be illustrated in the next sections. 
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 As indicated above, a COA is a control sequence implying a trajectory in time.  In the 
constrained optimal control problem, if there is a feasible region, the control sequence (and 
resulting trajectory) is bounded by a constraint manifold in time and space.  Instead of finding a 
solution to stationary problems as described above, one must find a sequence of steps that 
weaves a trajectory through this manifold without going out of bounds.  This is illustrated in 
Figure 5-3.  Clearly, this is a much more difficult problem to pose and solve.  In fact, this is the 
problem - finding a COA that weaves through the constraint boundaries without a violation. 
 
 
7. MISSION PREDICTION EXAMPLE 
 
 We will evolve our proposed solution approach by way of examples.  We will start with a 
mission level example to keep the complexity at a level we can deal with.  Clearly, the mission 
level example we will use, albeit complex, leaves out important considerations at the campaign 
level.  Probably the most significant is the human behavior factor.  However, there are many 
important factors accounted for in the mission planning problem that we will address first. 
 
 Figure 7-1 depicts the major aspects of the mission planning example.  Basically, a 
mission is planned to fly from the blue dot to targets near an air field, and back to the blue dot.  
The problem is to determine the best set of way points that maximizes the probability of 
neutralizing the targets, while meeting the constraints of getting pilots and aircraft back without 
loss. 
 
Measuring Mission Success 
 
 We start with definitions leading to measures of mission success.  The end-state of 
success can be represented by discrete or continuous outcomes that depend upon one or more 
state variables.  Defining Φ as the measure of success, e.g., the probability that targets are 
neutralized. 
 

Φ  =  Φ (x1, x2, ..., xN)  =  Π(Targets Neutralized) . 
 

 Figure 7-2 illustrates different ways to measure the probability of success, Φ.  Figure a 
shows the probability of taking on two discrete states signified by YES and NO.  Figure b shows 
a continuous probability on a continuous set of outcomes in the range [0.0, 20.0].  We note that 
in case b, both the range of the Random Variable (RV) and the probability are infinite sets. 
 
 In the mission planning scenario, there are two targets A and B.  One can measure the 
resulting damage in terms of the level of incapacitation of the targets.  One can make Φ a 
function of two state variables, each providing a numeric measure of the incapacitation of each 
target.  Various measures can be used to increase the value of hitting a particular target, or hitting 
both targets. 
 
 The mission will be planned initially with 4 aircraft, two with appropriate ordnance, and 
two with EW support systems.  The problem is to maximize Φ, target incapacitation, while 
meeting the constraints that the aircraft return to the RF point safely.  We will now discuss the 
constraints. 
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Figure 7-1.  Mission optimization example. 
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 Figure 7-2a.  Discrete states.                           Figure 7-2b.  Continuous Random Variable. 
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 We will impose the constraints that each aircraft gets back safely to point RF.  This 
imposes four constraints, one on each aircraft. 
 

H(1) = H1(x1, x2, ..., xN)  ≥  0      ==>   Aircraft 1 returns OK 
. 

. 

. 

H(4) = H4(x1, x2, ..., xN)  ≥  0      ==>   Aircraft 4 returns OK 
 
 
Determination Of The Constraints 
 
 The constraint functions will be posed in terms of probabilities.  This is similar to a 
reliability problem.  We will set the constraint such that the probability of losing an aircraft is 
less than 1%. 

Π(lost)  ≤  0.01 
 

This constraint must be satisfied before the mission plan can be accepted.  Rewriting this 
constraint in terms of an H function that must be positive,  
 

H(1)  =  0.01  -  Π(Aircraft 1 lost) . 
 

This implies that the constraint will not be met (is positive) unless the probability of losing 
Aircraft 1 is less than 1%.  We must now determine the probability of losing Aircraft 1.  We will 
interpret this as the aircraft being shot down or running out of fuel. 
 

Π(lost)  =  Π(shot down U fuel out) 
 

 The evaluation of this probability, as well as the measure of success of the mission, will 
be accomplished by models in the simulation.  Some of these models will be used to predict red 
COAs.  Based upon the requirements defined under Worst Case Design Optimization in 
Section 6, it may be necessary to evaluate the realistic worst case red COA.  Coming up with 
realistic worst cases can serve to simplify the problem.  This is discussed in examples below. 
 
 
Selecting The Best Flight Path 
 
 We must now select a flight path that meets all the constraints and provides the highest 
measure of success.  This is done in GSS using the nonlinear constrained optimization system.  
Using this system, a set of ranges on the coordinates of each way point is imposed by the analyst.  
The positions of the targets, the air defense radars, the SAM sites, and the antennas for the UHF 
communication links are known within some specified error distribution.  The system poses a set 
of way points, and the platforms fly a mission using these way points.  As missions fly, ground 
radars may pick them up and send track data to C2 centers.  C2 centers can assign weapon 
systems to engage the aircraft.  The weapon systems will determine which targets to engage 
based upon the rules of engagement for that weapon. 
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 The platforms contain models of early warning receivers, self screening jammers, and 
other EW gear on the aircraft.  As they fly through the air defense system, a probability of being 
engaged is computed based upon the signals received at each radar, the communication between 
the radars, the C2 centers, and the weapon systems.  When this probability exceeds the constraint 
threshold, the constraint is violated and the path is considered to be a nonfeasible solution.  In 
addition, the fuel is checked.  If the fuel is exceeded, then the constraint is also violated. 
 

 After a sufficient number of paths are tried, and a feasible solution is found, i.e., no 
planes are lost, then the system starts to search for feasible paths that increase the probability of 
incapacity of the targets.  It is possible that the problem cannot be solved as posed.  This 
generally implies a bad selection of way point ranges, or a different combination of aircraft.  It is 
up to the analyst to formulate another approach to the mission. 
 
 
TOOLS TO SUPPORT MISSION PLANNING 
 

 It is apparent that the mission planning tool described above requires inputs from other 
tools as shown in Figure 7-3.  In fact there are a multitude of tools that aid directly or indirectly.  
Examples are the Tactical Air Mission Planning System (TAMPS), Portable Flight Planning 
System (PFPS),  Joint Munitions Effectiveness Manual (JMEMs) and Joint Targeting Toolbox 
(JTT).  In Figure 7-3, the mission planning process has been broken out into several elements, 
some of which require inputs from separate subsystems, e.g., from the ISR and IADS 
subsystems.  It should be emphasized that many functions are currently performed at the Wing 
and Squadron levels.  Other tools are DIODE, AFMAS, Falcon View, ..., etc. 
 

 The ISR inputs, as shown in Figures 7-4, are needed to support the IADS simulation as 
well as the mission planning process.  For example, positions of targets, air defense radars, SAM 
sites, and antennas for UHF communication links must be known within some specified error 
distribution.  If not, the IADS simulation cannot produce a valid probability statement. 
 

 Figure 7-4 also illustrates the distributed nature of ISR assets.  Inputs from ISR assets can 
come directly from a sensor system, or from a higher level management system that has fused 
data.  The connectors with INT inside are shown to indicate interfaces to other systems or tools, 
e.g., the IADS, the EP Simulation, etc. 
 
 
IADS Simulation 
 

 The IADS simulation, Figure 7-5, is used to fly simulated missions to determine the 
effectiveness of a planned mission.  It can be used to determine the outcomes of many trials.  
These missions can cause changes to the IADS as they are flown, in turn causing the resulting 
flight to be affected by the changes to the IADS.  The models cover both red and blue assets. 
 

 The IADS simulation must contain more than a basic representation of the Integrated Air 
Defense System.  It must contain all of the elements that affect the effectiveness of that system.  
This includes the logistical support facilities, e.g., electric power, POL, and delivery of 
personnel, ordnance, other goods, and services needed to maintain the IADS at a given 
operational level.  The IADS simulation must take inputs that describe the state of these support 
elements to determine its ability to react to blue missions. 
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Figure 7-3.  Inputs from other tools. 
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Figure 7-4.  ISR inputs are required to support the IADS simulation. 
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Figure 7-5.  IADS simulation used to select missions. 
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ISR And Other Inputs 
 
 As indicated above, ISR inputs are essential to the IADS simulation and can be absorbed 
in real time.  These inputs determine where entities are located, their operational capabilities, the 
level of support they are getting, and their rules of engagement.  This is the key information that 
conditions the probability statements coming out of the IADS. 
 
 ISR inputs must be provided in terms of probabilities and confidence statements that can 
be used to project the probability of mission success and constraint violation.  Position locations 
are typically given in terms of the Elliptical Error Probability (EEP) or Circular Error 
Probability (CEP) around an estimated location.  These inputs are critical to increasing the 
accuracy of predicting the various probabilities of possible outcomes during a mission. 
 
 Note, the ISR subsystem can be treated as distributed, instead of going through what may 
appear to be a bottleneck.  For example, many systems want direct output from the Army’s 
Netted Full Spectrum Sensor (NFSS) Operations Management System (OMS).  They will not 
want to go through a higher level manager.  The NFSS will also be getting tasking requests and 
other inputs from these systems directly.  A sensor management system at a higher level may 
have some degree of control, but this will likely have to evolve and be reconciled on a Joint 
Services basis.  Therefore, the IADS will likely have to get its inputs from multiple sensor 
management systems directly, at least for some time to come. 
 
 
MISSION TRIALS 
 
 Looking at Figure 7-6, the mission planner (currently at the Wing or Squadron level) may 
start by configuring a single aircraft with minimal ordnance to take out the required targets.  He 
then runs the IADS simulation using optimization to find an optimal flight path to get these 
targets.  Depending upon the mission and the results, he may have to go through several trials as 
indicated below before achieving a successful result. 
 

1. Configure aircraft with minimal ordnance to get targets.  Run IADS and evaluate results. 
 

2. If mission is not successful, reconfigure aircraft with self-screening jammer.  Run IADS 
and evaluate results. 

 

3. If mission is still not successful, reconfigure aircraft with additional protective ordnance.  
Run IADS and evaluate results. 

 

. 
 

. 
 

. 
 

9. If mission is still not successful, configure additional aircraft with ordnance.  Run IADS 
and evaluate results. 
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Figure 7-6.  IADS simulation used to select missions. 

 
 
Computation Of Event Probabilities 
 
 Within a mission trial, various events occur that are used to determine the probability of 
success.  We will use simple examples to illustrate how the resulting sequence of probabilities 
can be used to determine a critical outcome.  We must emphasize that these illustrations are 
greatly simplified to describe the types of probability calculations one can use.  The methods 
described are not intended to represent the actual computational methods.  We will start by 
considering the probability of a constraint violation. 
 
 Consider that a blue aircraft is attempting to avoid the red Integrated Air Defense System 
(IADS) get to a target.  Let’s suppose that jamming a red UHF link while flying a segment of the 
specified flight path through the IADS sufficiently reduces the probability of getting shot down, 
thus meeting the constraint.  Looking at Figure 7-7A, the small ellipse, 1, represents the 
Elliptical Error Probability (EEP) around the position of the UHF antenna site represented by the 
dot.  This implies that we know the position of the antenna within a probability distribution 
signified by the EEP. 
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Figure 7-7.  Computation of event probabilities within a sortie. 
 
 
 Now lets assume that the jammer has an effective area of coverage represented by the 
cone emanating from the aircraft.  From the drawing, one can see that, even though we only 
know the position of the UHF antenna to within some error, the likelihood that we can jam it will 
still be close to 1 along a specified segment of our flight path.  Even if the aircraft varies off its 
flight path by a small amount, or if the heading, pitch, or roll vary, it is likely we will still jam 
the UHF link during that segment. 
 
 The important consideration to be derived from this example is that one cannot simply 
add or multiply probabilities and get meaningful answers regarding the effectiveness of a system.  
This is not simply a case of accounting for many factors.  It is the structure of the model that is 
most important.  Generally, representing this information using linear models will produce 
results that are not nearly as accurate as those using nonlinear models.  Furthermore, one must 
consider generating samples using the distributions or bounds to determine outcomes. 
 
 As another example consider Figure 7-7B where we plan to use kinetic ordnance on the 
target.  Ellipse 2 represents the loci of locations of the point where the ordnance will hit, given 
that we aim at the center of the target.  This ellipse represents an additional EEP of where the 
ordnance will impact the ground.  This error is compounded in Figure 7-7C which shows 
additional ellipses, 3, 4, and 5, of possible impact locations relative to the worst case target 
locations based upon the original EEP of the target (ellipse 1). 
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 Figure 7-7D shows the compound error ellipse, 6, as the locus of all possible points 
where the ordnance may hit relative to the actual target location.  Ellipse 6 represents the 
distribution of points of impact accounting for the EEP in actual target location, and the EEP of 
impact about the estimated target location. 
 
 Figure 7-7E contains an ellipse, 7, showing the area of destruction centered at the point of 
impact.  In the example shown, if the EEP perimeters are considered worst cases, then in the 
compound worst case condition, the target will still be destroyed. 
 
 There are numerous potential variations that must be analyzed carefully when computing 
the desired probabilities.  For example, an error in heading for a long flight leg can cause error in 
position estimation.  However, with GPS, this can be reduced.  The pitch, yaw, and angles of the 
aircraft can change the coverage area of antenna patterns on the aircraft as well as the cross-
sections presented to radar antennas on the ground.  These effects are generally nonlinear, and 
must be dealt with as such.  Else, the model error may be prohibitive. 
 
 From a modeling standpoint, this is a huge bookkeeping problem.  The models are 
generally well known, and come in varying degrees of resolution.  It is up to the modeler to 
determine the degree of resolution needed to produce valid results from a simulation. 
 
 
Representing Sequences Of Events 
 
 When an aircraft flies multiple flight legs as indicated in Figure 7-6, it encounters 
sequences of events of the type described above.  Each event can be conditioned on the prior 
event.  The probability of violating a constraint will be conditioned upon multiple sequenced 
events.  An example of how this may be calculated is provided below. 
 

Π(loss)  =  1 - Π(success_E_n|success_E_n-1)xΠ( success_E_n-1|success_E_n-2) 
 

   . . .    x Π( success_E_2|success_E_1) x Π(success_E_1) 
 
 
A COA Of Multiple Sorties 
 
 At some point, the planner may decide to break the overall mission into separate sorties.  
For example, the first sortie may take out an air defense radar.  This allows the second sortie to 
take out two SAM sites.  This allows the third sortie to take out an electric power plant, etc.  This 
can be described as follows. 
 

Π(success)  =  Π(success_S_n|success_S_n-1)xΠ( success_S_n-1|success_S_n-2) 
 

   . . .    x Π( success_S_2|success_S_1) x Π(success_S_1) 
 

This same concept also applies to the multiple mission case.  We will address this in the 
following section.  More importantly, this leads us to the next consideration, the reactions of the 
red force to blue actions. 
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RED REACTIONS TO BLUE ACTIONS 
 
 A significant aspect of the GSS IADS simulation is that red and blue force elements are 
represented by smart models.  This allows blue actions to interact with red reactions and vice-
versa.  For example, blue aircraft can be equipped with self-screening jammers so that they 
neutralize the red radars.  Sorties of multiple aircraft can contain escort jammers as well as 
ordnance to neutralize the IADS, allowing the principal weapon systems to get to the targets. 
 
 
The Effects Of Red Reaction Time On Prediction Accuracy 
 
 If we are dealing with a single sortie, the reaction time will likely be in terms of hours or 
even minutes.  Such short reaction times generally require preplanned approaches.  The shorter 
the reaction time, the more autonomous the reaction is likely to be.  The more autonomous the 
reaction, the more predictable it is likely to be.  Therefore, the reactions to fast moving sorties 
are likely to be more predictable than higher level reactions to multiple sorties or multiple 
missions that span a longer time scale. 
 
 As an example, if we take out an air defense radar, it may be possible to assign a larger 
coverage area to another radar close to the area.  It is likely that we can estimate the shortest 
reaction time to do this, and take it into account using the C2 and radar models.  Similarly, if we 
take out a SAM site, it is likely that we can predict and model what the reaction will be during 
the course of a single sortie. 
 
 On the other hand, if we wait for a Battle Damage Assessment (BDA) report that may not 
be available until the next day, more people will enter the red decision process, and more assets 
may be brought to bear.  We may then face a more varied set of much larger reactions.  Because 
human decision chains are brought to bear with more options over time to mitigate the blue 
actions, the red reactions will likely be more difficult to predict. 
 
 There are two ways to combat this difficulty.  We can model red’s reactive decision 
processes relative to blue actions.  The accuracy of prediction will depend upon the behavior of 
the leadership.  Good leaders can be difficult to predict.  Alternatively, we can plan sorties more 
carefully so that red has little time to react with a larger coordinated asset base.  Just like the 
element of surprise, a major factor in neutralizing the use of defensive assets is the speed with 
which a sequence of sorties unfolds.  As we increase the accuracy of predicting outcomes of 
sorties, we can better synchronize multiple sorties unfolding in parallel, as well as decrease the 
time between sorties.  This gives the adversary little time to coordinate human decisions 
covering a larger asset base, relegating the assets to more autonomous behavior.  This should 
serve to increase the overall prediction accuracy of mission outcomes. 
 
 Based upon the situation at hand, one must estimate the time frame within which one is 
dealing with autonomous behavior versus coordinated behavior with respect to significant asset 
changes.  This determines the validity of current ISR information and error variances versus 
accounting for the human decision processes leading to significant departures from current ISR 
information.  This can be couched in terms of discrete state changes as a function of time. 
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Time Frames Allowing For Significant Red Asset Redirection 
 
 We will now investigate what happens when the time between blue missions increases to 
the point that allows for red human decision processes to intervene.  This allows for significant 
changes in assets and COAs on the part of red.  Instead of dealing with reasonably accurate 
predictions of what blue is going to do to red, one must deal with potentially significant and 
unpredictable changes by red.  This is particularly difficult given that red leadership will try to 
deceive blue, if not make it difficult to predict what they will do. 
 
 This is illustrated in Figure 7-8.  The possible outcomes spread due to the time that red 
has to make changes.  One could argue that the increase in variance may be nonlinear, increasing 
more with time.  One can also argue that red changes will be constrained, limiting the variance.  
We are not attempting to determine the relationship between variation and time, only to say that 
as time increases, so does the variation.  During these red reaction periods, ISR assets can be 
used to gain insights into who is communicating, who is moving, and what is happening. 
 

 TIME
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Figure 7-8.  Computation of event probabilities within a mission. 

 

 
 Figure 7-9 provides an alternative view of the spread of possible outcomes when 
sequences of missions are packed into shorter time frames.  The shorter the time period for red 
reactions, the smaller the variance from the current situation.  This implies that as missions are 
packed tighter in time, including parallel operations when feasible, the more accurate the 
situation prediction will be for successive starting points. 
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Figure 7-9.  Computation of event probabilities within packed missions. 

 
 
 
Packing And Synchronizing Multiple Missions Into Short Time-Frames 
 

 What does it take to pack and synchronize a large number of sorties into a short time 
frame?  Clearly it takes more assets and more control over those assets.  It also takes sufficiently 
accurate predictions of the end-states of sorties that affect the starting states of follow-on sorties.  
Based upon the probability calculations described in the above Section - A COA Of Multiple 
Sorties, we must deal with the effect of multiplying many probabilities.  Each of the individual 
probabilities must be very high to keep the probability of success high. 
 

Π(success)  =  Π(success_S_n|success_S_n-1)xΠ( success_S_n-1|success_S_n-2) 
 

   . . .    x Π( success_S_2|success_S_1) x Π(success_S_1) 
 

 Given sufficient resources, backup or contingency plans can be laid to achieve higher 
individual probabilities of the individual sorties in the sequence.  If sorties are independent, they 
can be accomplished in parallel, again requiring more assets.  If they are not fully independent, it 
still may be possible to synchronize them, provided the degree of interaction can be predicted 
with sufficient accuracy.  Finally, if the effects achieved can be assessed and communicated 
quickly, then one can make a decision to continue the fast pace, or to hold because of 
encountering unacceptable risk. 
 
 It is clear that, if blue can achieve sufficient surprise, speed, and synchronization, red’s 
reactions to blue actions will be severely constrained.  This leads to higher end-state prediction 
accuracy resulting from a set of blue sorties.  Given sufficient accuracy of the end state 
predictions permits immediate blue follow on sorties.  Given sufficient assets, control, and the 
ability to predict end-states accurately, speed increases the inertia that reduces red’s ability to 
counter in an effective manner. 
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8. PLANNING PROCESS CONSIDERATIONS 
 
FUSING FEASIBLE TRAJECTORIES 
 

 As used here, fusing feasible trajectories implies fusing feasible sub-COAs. 
 

 Military planning typically starts with a commander whose responsibility is to obtain a 
specified set of effects or objectives.  An example is a JFC or the equivalent in classic 
battlespace, or in an asymmetric terrorist environment.  In any case, actual planning and 
execution occurs across a coalition of organizations and sub-organizations that play a role in the 
process.  Control is generally organized hierarchically. 
 
 
A Typical Control Hierarchy 
 

 An example of a military control hierarchy is illustrated simplistically in Figure 8-1.  At 
the lowest level of interest here, we encounter the need for a planning tool focused on the 
objective at that level. 
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Figure 8-1.  A simplified representation of a military planning process. 
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The Military Planning Problem - A Distributed Set Of Optimal Control Problems 
 

 Although control of a military force can be viewed as a classic complex control system, 
there are a few significant departures from the typical real time control problem.  Probably most 
important is the distributed nature of the problem.  The problem as the JFC sees it is just the tip 
of the iceberg.  All of the boxes (cells) in Figure 8-1 can be considered control systems as shown 
in Figure 3-1, with each cell tasked to perform certain functions.  For example, one of the cells 
may be a logistical planning group, tasked to produce a plan for getting troops from point A to 
point B within some constrained amount of time while minimizing some cost measure.  Another 
might be an information operations cell, tasked to gather SIGINT.  Another might be a cell in an 
Air Force squadron, planning a flight to take out certain sets of targets.  Each of these must solve 
their own local optimal control problem.  And each of these solutions can be affected by, and 
affect, some of its neighbors.  Units must communicate plans, orders, ISR information, etc. 
 
 
Information Exchange 
 

 Also shown in Figure 8-1 are communication cross links that provide for sharing of 
information across organizational structures as well up the chain of control.  The product of an 
information operations cell can be input to the cell planning missions for specified targets as well 
as for many other boxes in Figure 8-1.  Output of one cell can be observable inputs to other 
distributed control elements.  When analyzing a control system, part of the problem is the 
accuracy of the information inputs.  Variations in the data will cause variations in the predicted 
responses that are used to determine the optimal control sequences.  Furthermore, getting the 
right information to the right spot within a useful time frame is a significant part of the problem.  
Because of the distributed nature of the controls, understanding these information exchange 
requirements is a major consideration. 
 
 
Fusing The Trajectories 
 
 There are two important factors to emphasize.  First, the individual cells are like the 
salesmen who have considerably more information upon which to condition the envelopes of 
their trajectories of critical events in time.  Second, these trajectories and envelopes can feed the 
next layer up, or possibly a peer layer, to improve the conditioning on the probability statement 
for their trajectory.  This is illustrated in Figure 8-2, where the information flows are shown, 
independent of whether they are following the control hierarchy or are peer interchanges. 
 
 The current approach to formulating and interchanging this information in the AOC is 
somewhat informal.  An appropriate set of tools as depicted in Figure 8-3 can improve the means 
for interchange as well as generation of the critical information required to maximize accuracy of 
prediction at each layer up the hierarchy. 
 



 

51 

HIGHER LEVEL
Operation

SUBSET OF
PLANNING

CELLS

STRIKE
Mission

COLLECTION
Mission

JAMMING
Mission

DECISIONS  8/5/02  
 

 
Figure 8-2.  A simplified representation of a military planning process. 
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Figure 8-3.  An integrated set of DSAP tools. 
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 Referring back to Section 3, Figure 3-2 provides a detailed block diagram of a typical 
control system containing an imbedded prediction system.  This is redrawn for simplicity in 
Figure 8-4a below.  In the case of a distributed control system as depicted in Figures 8-1 and 8-2, 
each element takes on the form shown in Figure 8-4b below. 
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Figure 8-4a.  A typical control system. 
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Figure 8-4b.  A distributed control system. 

 
 
 The difference between Figures 8-4a and b above is the explicit output of predictions 
from one tool for input to another tool.  Each tool that provides predictions to another tool must 
also provide the characterization of prediction error to the receiving tool.  This error 
characterization must be used by the receiving tool to determine the error of its own predicted 
response.  The error from the predicted input must be used to determine the feasibility of meeting 
constraints, as well as the optimized control sequence. 
 
 
Characterizing Predicted Or Forecasted Responses 
 
 Figure 8-4b takes in predicted responses and produces predicted responses.  This will not 
always be the case.  Many tools do not produce predictions, including error characterizations and 
confidence levels, as defined here.  The types of responses produced by various tools of interest 
must be characterized.  For example tools that use engineering models may have the error 
characterized based upon prior testing and analysis.  Sensors typically provide CEPs and EEPs as 
indicated in Section 7.  These can be used as predictions provided that the environment in which 
the model and real equipment are used does not nullify the validity of results.  Models that 
produce forecasts are addressed in the Section 10. 
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REUSING PLAN SEGMENTS 
 
 When planning missions under severe time constraints, it is most desirable to be able to 
draw on libraries of missions or other forms of plan segments so that most of the details are 
already built.  The trade-off between starting with a segment that must be changed and starting 
with a clean slate depends upon the time it takes to get the job done.  Most often it should help to 
start with a plan that has been used in the past. 
 
 
State Sequences That Appear Repetitive 
 
 In general, we cannot say that the sequence of events in a competitive engagement 
involving large numbers of entities will be repetitive or cyclical.  Repetitions may appear to 
occur, but they are most likely different to a small but important degree.  This is to be expected 
since adversaries will look to take advantage of what appears to be a repeated direction to invoke 
surprise. 
 
 This is not to say that subsets of a plan may not be viewed as repetitive parts.  However, 
the context is likely to be significantly different.  Using Figure 8-5 as an example, going from A 
to B at time TL may look the same as going from F to G at time TM.  However, this is different 
from saying that states repeat in time.  Time itself is part of the system state vector, and anything 
that depends upon time may make the state transition different, even if we remove time from the 
state vector explicitly. 
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Figure 8-5.  A fraction of a potential event sequence in a planning tree. 

 
 
 If subsets of an event sequence can be treated as independent relative to their context, 
then they may be reused.  This is explored in the next section. 
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Properties Of Reusable Plan Segments 
 
 Can parts of a plan be reused?  If they can, they may need some tailoring.  The important 
property is that these segments are sufficiently independent of their context or environment.  The 
more independent, the less tailoring required.  The measure of independence is determined by the 
initial and terminal states, and the internal state of the system at the initial time.  Finding 
opportunities for reuse may be very productive.  At some point, tailoring becomes less 
productive than starting with a clean slate. 
 
 
APPROACHES TO REPRESENTING END STATE PROBABILITIES 
 
Finite State Machine Representations 
 
 Techniques based upon finite state machine representations, e.g., those dealing with event 
trees, are known to have difficulty with scalability.  For example, the tree segment in Figure 8-5 
may be a very small fraction of a real state diagram as a function of time.  Note that, starting at 
time TM, there is a single state - A.  At time TN, there are 16 states spawned from state A.  It is 
not hard for a realistic plan to evolve potentially to thousands of states.  The difficulty of 
calculating the end state probability grows rapidly as the number of states increase.  What’s 
more, this approach appears unsuitable when dealing with states that take on continuous values.  
This is discussed below. 
 
 A finite state machine can be used to represent elements of a digital computer, 
particularly the arithmetic operations, e.g., add, subtract, multiply, and divide.  However, to 
represent a small program using even a small memory can be intractable.  If one or more states in 
a program are represented by real numbers, representing them directly using a finite state 
machine becomes effectively intractable.  The underlying problem is that of selecting the most 
convenient coordinate system to represent the dynamics of the system of interest. 
 
 
Representing States With Infinite Outcomes 
 
 The finite state machine approach assumes that all states have a finite set (typically a 
relatively small set) of outcomes.  In many real planning situations there are cases that must be 
represented by continuous outcomes for accuracy.  When an attribute is represented by a real 
number, e.g., a probability between 0 and 1, or any continuous variable (e.g., temperature, spatial 
coordinate, etc.), there is an infinite set of outcomes or states. 
 
 As an example, suppose that F in Figure 8-5 can advance to a continuous range of 
outcomes between G and H.  This is very easy for a digital computer to represent.  One typically 
uses 32 or 64 bits to represent a real number.  That’s how nonlinear differential equations get 
solved using computers.  Most engineering problems deal with real numbers; they could not be 
limited to integers or finite states.  It is very difficult, if not intractable or impossible, for 
methods that depend upon a finite state machine representation to deal with such problems. 
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Representing Distributions Using Stochastic Models 
 

 Solution of the infinite state problem is common in engineering.  One is looking to derive 
sufficiently accurate estimates of the values of continuous functions, or determine distributions 
representing the components of the end state response vector, Z.  (Z is derived from the state 
vector, X, which represents the dynamic system.)  This does not require an exhaustive solution 
for all the intermediate states.  When dealing with real numbers, this would require a space of 
multiple orders of infinity. 
 

 To estimate end state distributions, one typically creates a stochastic state space model 
that represents the transitions of state.  It is not unusual for models to contain millions of simple 
rules governing transitions of huge state spaces.  The stochastic version of the generalized state 
space model can be based upon the distributions at each transition point, [20], [21], [22].  To 
investigate worst cases as defined in Chapter 6, one need not know the precise shape of the 
distributions, only a set of bounds that encompasses the possible outcomes. 
 

 By using simulation, one can select samples from these distributions to generate the 
resulting path from the initial state to the final state.  There are various ways to generate enough 
paths to provide a sufficiently accurate estimate of the distribution of the terminal state.  Monte 
Carlo is a popular approach.  It is implemented by taking random samples from the distributions 
at each transition, or at any point where the possible outcomes affecting the final state are 
represented by a distribution. 
 

 By virtue of the central limit theorem of statistics [24] - and given that: (1) the bounds on 
the transition distributions are represented with sufficient accuracy, and (2) a sufficient number 
of sample paths are generated - the resulting end state distributions should converge to those of 
the real system.  Generating a sufficient number of paths is relatively easy.  We will discuss the 
requirement on bounds of the distributions below. 
 

 One of the significant differences between this approach and those using a finite state 
machine is the recognition that one is looking to characterize a distribution of the end state.  This 
is required in order to provide confidence measures for the probability statements.  Given that we 
must produce an estimate of the distributions, we can accomplish this via statistical sampling.  In 
fact, the models used to generate the samples can be very accurate since we are only computing a 
single sample path and the number of sample paths required is likely to be quite small.  Most 
likely less than 100 paths will have to be generated.  Therefore we can focus on model accuracy 
instead of looking for ways to rapidly run through all possible paths of a much less accurate 
model. 
 
 
Representing Bounds On Distributions Using Stochastic Models 
 

 As described in Chapter 6 and the corresponding references, one typically takes a worst 
case approach when the distributions needed to describe the variations are unavailable.  This can 
be done with minimal data, or by making judgments about reasonable limits.  Multiple powers of 
ten rarely apply to ranges of numbers, and when they do, someone typically knows reasonable 
ranges, or one can come up with limits that are imposed by obvious logical or physical 
limitations.  Important parameter limits can be researched.  One can then perform parametric and 
sensitivity analysis and draw conclusions based upon simulation results. 
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Predictions using probability statements 
 
 By definition, probabilities are derived from distributions.  Without sufficient knowledge 
of the distribution of values that an attribute takes on, one cannot determine the probability that a 
particular value will be exceeded with any consistency.  This can be achieved without knowing 
the shape of the distribution provided one has boundary values to determine probabilities 
(unknown but bounded distributions [19]).  In any case, one must provide a confidence in the 
probability statement, or it is not very useful.  If one analyzes how the probabilities are derived, 
and it turns out that there is less than 50% confidence in the probability statement, this must be 
factored into the use of the probability statement.  Otherwise, when one goes back and looks at 
the outcomes, they may not reflect the apriori probability statements.  When one has insufficient 
data to formulate all of the distributions, unknown but bounded distributions can be used with a 
worst case design approach. 
 
 
Posing the worst case design problem 
 
 The worst case design problem in engineering provides an excellent example of the 
solution to prediction problems.  See References [13] through [18].  Consider that the Test 
Sample trajectory inside the shaded area in Figure 2 must satisfy two constraints selected from 
operational requirements.  First, during the initial (TI) to final (TF) time period (TI, TF), the 
trajectory must remain above the H(1) = 0 line.  Second, it must remain below the H(2) = 0 line.  
These two constraints are expressed as inequalities. 
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Figure 8-6.  A worst case design problem. 
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 In a typical worst case design problem, the two constraints must be satisfied for all 
conditions reflecting the range of possible parameter variations one could encounter over the test 
sample trajectory.  The nominal design is usually centered within the constraint boundaries.  The 
worst cases occur when the trajectory comes closest to either of the constraint boundaries.  
Additional variations may violate the design constraints.  Typically, the constraint boundaries 
can be tested independently to find a worst case condition for each constraint. 
 
 In addition to meeting the design constraints one also wants to optimize the design.  For 
example, one may want to minimize power or minimize state transition time while meeting the 
constraints.  In general, one is usually trying to minimize energy spent, resources used, or time to 
achieve a goal.  This typically pushes the trajectory to the worst case limits. 
 
 Worst case optimal design problems of the type described above have been solved for 
problems with large numbers of constraints and hundreds of transition equations.  The 
optimization algorithms contained in GSS have been proven to work well for these types of 
problems 
 
 
POSING THE WORST CASE OPTIMAL CONTROLLER DESIGN PROBLEM 
 
 This section explores the elements required to define the worst case optimal control 
problem.  The intent is to understand what is required to deduce a well defined problem when 
faced with variations in a nominal trajectory that can cause constraints to be violated.  In 
addition, we are concerned with controlling a system that is changing in real time.  Thus, we are 
predicting a sequence of optimal controls to be used up to some terminal state, watching what 
happens, and then updating the optimal control sequence starting from the current state. 
 
 
Initial and terminal states 
 
 To properly define the optimal control problem, one must have well defined initial and 
terminal states (TI and TF in Figure 8-7).  These states may be parameterized, but the ranges 
must be defined as a set for which someone will provide the numbers. 
 
 At a higher level, one may have to solve multiple optimal control problems to solve the 
overall problem including the identification of worst cases for each constraint, and optimization 
of selected criteria.  Worst case constraints may have to be met at initial and terminal states that 
must match given requirements.  For example, if the terminal state of one subsystem is the initial 
state for a subsequent subsystem, the worst case outputs must fall within acceptable limits of the 
worst case inputs to the follow-on system. 
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Isolation of subsets of the planning problem 
 
 One has to determine the time frame of a scenario, i.e., the values for TI and TF, beyond 
which the planning process changes too much, variations, grow too large, or plans are just not of 
interest.  Given a sufficiently accurate model including the bounds on variations over TI and TF, 
one must know the initial conditions at TI with sufficient accuracy.  If simulations take many 
minutes of time, it may be possible to update state estimates in real time.  If Monte Carlo or 
optimization is used, then TI may be updated in real time. 
 
 In the field of circuit design, CAD researchers tried to automate the approach to 
architecture, i.e., what is the best way to structure the overall network.  But experienced circuit 
designers could generate innovative architectures rather quickly.  One could perceive automating 
the selection of predefined architectures, but even that had substantial difficulties, and could not 
appear to be at all competitive with human experience. 
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Figure 8-7.  Matching the initial state of the next phase with the terminal state of the last. 
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Using A Scheduling Approach Versus A Simulation Approach With Optimization. 
 
 Both the scheduling approach and simulation approach use optimization algorithms.  
Scheduling algorithms generally use linear programming methods.  The problem is accounting 
for the nonlinear nonstationary effects that determine realistic model behavior.  They can be used 
in tandem as shown in Figure 8-8, with a man-in-the-loop to do the final optimization. 
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Figure 8-8.  Using a detailed battlespace simulation to predict the outcome of a plan. 
 
 Alternatively, if the simulation runs fast enough, and enough smarts are built into the 
models, the battle space simulation could be presented with the desired sequence of steps and 
built-in optimization could be run to determine the schedule with all worst case conditions 
applied automatically.  This is the worst-case stochastic optimal control problem. 
 
One can conceive of presenting the desired end state description to the battlespace simulation 
and having the sequence of steps determined automatically.  At this point in the process of 
developing and integrating technology for solving the overall planning problem, efforts are best 
focused upon using human intervention to develop the desired sequence of events with 
specialized tools to perform this function. 
 
 
Using smart models to represent adversarial reactions 
 
 The battlespace simulation must represent red reactions to blue actions.  For example, if 
blue aircraft fly over red airspace, they are detected by red radars.  Track information is passed to 
red C2 centers to be processed.  The C2 centers assign weapon systems to track and engage blue 
aircraft. 
 
 In general, one can use smart models to represent both friendly and adversary reactions to 
the others actions.  To do this, the appropriate adversarial model state vector sequences, and 
transition probabilities required must be available. 
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9. PLANNING FOR THE WORST CASE 
 
 In Section 7, we imposed the constraints that each aircraft complete its part of the mission 
and return to its base - intact.  This could also be imposed using small but finite probabilities that 
a loss could occur, and lumping them in with the optimization criteria using a very large 
multiplier to weight them heavily.   This second approach is easier if one is constrained to the 
use of linear mathematical-statistical models.  However, the desired constraints are not separated 
out, and the large multipliers tend to blur the real boundaries.  Working with hard constraints that 
must be met in order for solutions to be feasible helps to align the definition of the problem with 
real world requirements.  However, the problem becomes much harder to solve without special 
algorithms to find feasible solutions, and optimal solutions that meet all of the constraints. 
 
 Given a general discrete-event modeling environment, where nonlinear actions and 
reactions can be modeled in detail, both the definitions and measures of satisfaction of 
constraints can be described quite accurately.  One can determine the probability of failure in 
terms of a constraint boundary, and the probability of failure if that boundary is crossed.  Good 
judgment can be used to define these constraint boundaries in a precise pass/fail manner.  This 
makes it clear when constraints have been violated. 
 
 When characterizing red reactions to blue actions, one must deal with the worst case 
scenario.  This can help to simplify the problem.  For example, if there are a set or range of 
reactions that can be taken, one simply analyzes the reaction that is worst-case.  As indicated in 
Chapter 6, worst case must be considered independently for each constraint.  It occurs when that 
constraint goes maximally negative (independent random variables are selected to maximize the 
probability of a constraint violation).  Thus the worst case for a given constraint can be 
determined by finding the combination of reactions that maximizes the probability of violating 
that constraint.  This can be accomplished automatically using nonlinear optimization techniques 
as described in references [14] and [17]. 
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10. Fusing Forecasts With Predictions 
 
 Not all of the cells that have planning tools will be able to provide predictions.  Some will 
only be able to provide forecasts.  Figure 10-1 illustrates this situation.  One is faced with the 
question of how to gain predictions from forecasts. 
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Figure 10-1.  Fusing forecasts with predictions. 

 

 
 This presents the question: How can we fuse forecasts with predictions?  The solution to 
this problem can be approached in two ways.  One way is to plug in worse case outcomes or 
trajectories in place of the forecasts and determine if feasible solutions can be found that are 
acceptable.  Another approach is to perform parametric and sensitivity analysis to determine the 
range of possible outcomes.  These are described below.  In either case, one is trying to derive 
statements about future outcomes.  Once a forecasting method generates sufficient predictions 
that can be compared to real world outcomes, a prediction can be developed using the measured 
error data. 
 
 
Fusing Worst Cases Forecasts 
 

 This approach requires analysis to determine what the worst case outcomes are.  In 
general, outcomes are characterized by a state vector of attributes as discussed in Section 4.  The 
reader is also referred to Section 6 describing the worst case design problem.  Before a forecast 
or prediction can be made, the set of possible outcomes (outcome states) must be enumerated.  
This may involve range limits on real numbers, a set of states that a status variable can take on, 
etc.  If one is not able to make a prediction, one can determine the worst case outcome and use 
that as an input to the next tool.  If this worst case input is the only one, with many prediction 
inputs to the next tool, the resulting prediction from that tool may yield satisfactory results.  If 
the worst case is too severe of an input, the output from the next tool may be unsatisfactory. 
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Parametric And Sensitivity Analysis 
 
 If the worst case approach presents conditions that are too severe or costly, then one can 
perform parametric and sensitivity analysis to relax the conditions.  This requires performing 
large numbers of simulations to characterize the probabilities of outcomes in terms of variations 
of the input parameters.  If one can assign probabilities to the inputs, then one can make a 
prediction.  If not, a more accurate forecast can be used as a proxy for a prediction. 
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11. SIMULATION ARCHITECTURE CONSIDERATIONS 
 
 Starting with the simulations required to support the mission planning process shown in 
Figure 7-3, we will examine the model architectures from a more generic perspective.  
Figure 7-3 indicated the need for at least five simulations.  These were made up of the IADS 
simulation supported by four other simulations.  This was merely an illustration of the approach 
to using simulation to support the mission planning process.  We will now take a more generic 
look at how models and simulation architectures might be organized to support more complex 
realities of this planning process. 
 
 
Types Of Entities To Be Modeled In A Battlespace Simulation 
 
 In the North East Asian (Korean) scenario for the JTIDS network management effort, 
four naval battle groups are modeled along with friendly ground forces, including air defense 
systems, as well as all of the air assets including sensors and C2 systems.  The types of entities to 
be modeled in the active simulation may include, but not be limited to, the models listed below. 
 

Targets - Targets of opportunity for blue forces, specified objective targets, immediate 
targets, etc. 

 

Blue Aircraft - Reconnaissance planes, fighters, bombers, etc., with dynamic changes to 
organizational and operational assignments, detailed flight plans, refueling, targeting, etc. 

 

Blue Naval Vessels - Carrier battle groups, including the carriers, AEGIS, destroyers, 
submarines, etc. 

 

Blue Ground Vehicles - Tanks, Bradley fighting vehicles, armored personnel carriers, 
etc. 

 

Blue Sensors - Including radars and other detection systems. 
 

Blue Jammers - Including radar and communications jamming systems. 
 

Blue Weapon Systems - Including the closed loop message traffic that must be 
concluded in order for a weapon to be successfully set on a target.  Includes probabilities 
of kill. 

 

Blue Special Ops - Including ground forces. 
 

Blue C2 Nodes - Includes reception of messages calling for weapons on targets, 
decisions of what weapons are best suited to what targets, and assignments of targets to 
particular weapons. 

 

Blue Communications Traffic - INTEL Tracks, Locations, etc., C2 voice and data 
messages, and other traffic. 

 

Blue Communications Systems - Ground wired and wireless systems, satellites, etc. 
 

Electro-Magnetic Environment - Effects of terrain, foliage, atmosphere, correlated and 
uncorrelated noise, etc. 
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Red Aircraft - Reconnaissance planes, fighters, bombers, etc., with dynamic changes to 
organizational and operational assignments, detailed flight plans, refueling, targeting, etc. 

 

Red Ground Vehicles - Tanks, other fighting vehicles, armored personnel carriers, etc. 
 

Red Jammers - Emission of different types of waveforms over different parts of the 
spectrum. 

 

Red Air Defense Radars - Scanning, emission, and detection to determine if friendly 
platforms are being tracked. 

 

Red Weapon Systems - Includes the message traffic that must be received in order for a 
weapon to be successfully set on a target.  Includes probabilities of kill. 

 

Red C2 Nodes - Can include reception of messages calling for weapons on targets, 
decisions of what weapons are best suited to what targets, and assignments of targets to 
particular weapons. 

 

Red Communications Traffic - INTEL Tracks, Locations, etc., C2 voice and data 
messages, and other traffic. 

 

Red Communications Systems - Ground wired and wireless systems, satellites, etc. 
 

 
 
MODEL AND SIMULATION HIERARCHIES 
 
 Figure 7-3 illustrated a simulation hierarchy consisting of an IADS simulation being fed 
by four other simulations, two of which (TEL-SCOPE and SAT-COMMS) were communications 
simulations.  These examples were used to reflect the most recent use of simulation to support 
the planning process for existing Air Force applications.  We will attempt to expand on this 
concept to achieve a more generic view of model and simulation sizes and hierarchies. 
 
 
Requirements For Modeling Large Numbers Of Entities 
 
 Figure 11-1 illustrates potential model hierarchies that could be used to support a variety 
of planning tool applications.  Again we are limiting ourselves to the IADS type application.  At 
the top of the figure are the basic models required in the IADS simulation.  To simulate a single 
mission with sufficient accuracy, one must model the ISR capabilities, the C2 effects, and the 
weapon systems for both red and blue to a required level of detail.  This implies modeling 
specific equipment available to perform for that mission, including the platforms, 
communications equipment, jammers, and ordnance pertaining to red and blue.  One must model 
blue fuel availability and the refueling part of the scenario when multiple sorties are required. 
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Figure 11-1.  Illustration of hierarchical model architectures. 
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Requirements For Multiple Resolutions 
 

 The different colors are used to represent different levels of resolution.  The first level 
models - blue boxes - must model the interactions of ISR, CE, and weapon systems.  These 
elements must communicate using a set of communications models - yellow box.  These comm 
models may be at a relatively low level of resolution, indicating the probability that messages 
will get from A to B. 
 

 The higher level resolution communications models (in purple) are needed to compute 
the probability of communications for the lower resolution models.  These must be updated by 
the EME LINK models (darker red) when units change power levels (turn on and off) or move, 
or when jammers move or change power levels in the band of concern.  These higher level 
models can be contained in separate simulations.  This provides independence, affording ease of 
maintenance and the ability to support multiple simulations.  It also provides potential speed 
improvements if run on separate processors. 
 
 
Requirements For Subject Area Experts 
 

 As indicated a number of times above, human judgment will not be eliminated for the 
foreseeable future.  Subject area experts will be called upon to make the decisions, using the best 
tools and automation available. 
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Figure 11-2.  Illustration of hierarchical model architectures with subject area experts. 
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Requirements For Graphical Displays And Background Overlays 
 
 Visualization of scenarios for military planning generally starts with a map.  If a 
reasonably detailed map is not available, military planners will not use the tools.  Maps must 
reflect the scenario.  Figure 11-3 illustrates a graphical display with a map background. 
 
 

LEBANON

SYRIA

RUSSIA

GEORGIA

IRAN

EGYPT

SUDAN
RED SEA

SAUDI ARABIA

KUWAIT

IRAQ

BLACK SEA

TURKEY

UKRAINE

JORDAN

ARMENIA
AZERBAIJAN

UZBEKISTAN

TURKMENISTAN
TAJIKISTAN

KYRGYSTAN

AFGHANISTAN

PAKISTAN

INDIA

CHINA

ARABIAN SEA

OMAN

U.A.E.

QATAR
GULF  OF  OMAN

PERSIAN GULF

BAHRAIN

CYPRUSMEDITERRANEAN SEA

IS
RA

EL

LAKE BALKHASH
SEA OF AZOV

CASPIAN SEA

ARAL SEA

THESTANS  11/11/02

KAZAKSTAN

          002
40.035,-100.23

          005
41.235,-102.47

          003
40.535,-100.10

          004
41.235,-100.23

          007
40.005,-101.23

          006
40.235,-101.17

QUIT

ZM - OUT STATUSREDOUNDO COVER ZM - IN HOMEDELETE UNCOVRESCAPE INTR

LINE

DETACH BLINK ROTATEUPDATEATTACH

INST

OVERLAY

PROFILE

LEGEND

NETWORK
LINE
NODE
CENTER

ICON

STOP

YIELD

PAUSE

PLOT

MENUS

SIMREAL

MODEL:  DSAP_1 (SUSPENDED) SIM TIME: .217493E+01 X: 975.23,  Y: 713.52            WED 01/03/01              10:18:15
 

BUTTONS

SCALE

R u n -T i m e Gr aph i cs (R T G)

F 8

F 7

SWITCH

GSSOPT

T-PATH

ATTACH

NETLIST

ADD PROFILE

VIEW PROFILE

EDIT PROFILE

REMOVE PROFILE

 
 

 
Figure 11-3.  Illustration of graphical display of selected operations. 

 
 
 Fully flexible electronic maps allow the viewer to pan and zoom over very large land 
areas.  In most areas of the world this is accomplished using 6º by 8º UTM grid zones that have a 
width of approximately 600 to 700 Km and a height of 800 to 900 Km.  Each grid zone provides 
a separate Cartesian coordinate system for fast x, y calculations.  These grid zones are fitted 
together to form the map.  An illustration is shown in Figure 11-4. 
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Figure 11-4.  Illustration of the size of terrain area required to support a Mid-East scenario. 

 

 
 The lines of longitude and latitude shown in Figure 11-4 are rough approximations of 
grid zone boundaries, used principally to indicate coverage.  Since the grid zone boundaries are 
fixed, a land area width of 700Km may require 3 grid zones of latitude.  Similarly, a land area of 
1000x1000 may require up to 9 grid zones. 
 
 Depending upon the land area one must view, including the various seas, the number of 
grid zones can range from 6 to 40.  Depending upon the resolution required for sufficiently 
accurate Line-Of-Sight (LOS) or propagation calculations, databases will be on the order of 1 to 
10 Gigabytes.  These databases can be built into hierarchical nonhomogeneous structures for fast 
access and minimized storage. 
 
 Graphical interfaces with detailed map and entity representations is important from many 
standpoints.  Visualization of complex scenarios is the best approach to verification and 
validation of simulations and graphics support software.  End users can look at the scene and 
determine quickly if something appears to be operating incorrectly.  Once having operated this 
way, it is difficult to get experienced operators to use facilities that do not provide these insights. 
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12. SPEED OF SIMULATIONS 
 
 Based upon analyses performed by PSI, the distributed battlespace simulation required to 
support PBA planning turn-around time, accuracy and stability requirements will have to be run 
at 20 to 100 terahertz rates.  That is on the order of 10,000 times faster than today’s single 
processor speeds.  If distributed over 100 computers, each would have to have the power of 100 
processors.  Because of the inefficiencies caused by physical distances, and more importantly 
going through the layers of communications protocols across multiple operating systems, an 
innovative parallel processing architecture will have to be brought to bear to meet the speed 
requirements.  This section provides an initial analysis of the factors affecting the requirements 
for speed of PBA simulations, as well as the difficulties to be overcome to meet these 
requirements. 
 
 
REQUIREMENTS FOR SPEED 
 
 There are various ways to analyze the requirements for speed to support planning in the 
AOC.  We will start with the current three day (72 hour) cycle of the ATO and define the 
prediction horizon accordingly as 72 hours.  This implies that the overall battlespace simulation 
would have to cover 72 hours of operation.  Running in real time, one simulation would take 72 
hours to complete - an unacceptable time period.  If one allowed 2 hours to make a single run, 
then it would have to run 36 times faster than real time.  If, after each run, it took 2 hours to 
review the output, determine what should be changed to improve the likelihood of desired 
outcomes, and set up the next run, runs could be done every 4 hours, or twice in an 8 hour shift.  
This would allow for replanning 6 times in a 24 hour period, while looking at the 72 hour time 
horizon.  This is illustrated in Figure 12-1. 
 

DAY 1

EXAMPLE OF A REFINED 72 HOUR PLANNING HORIZON WITH A 4 HOUR CYCLE

DAY 2 DAY 3

SHIFT 1 SHIFT 2 SHIFT 3 SHIFT 1 SHIFT 2 SHIFT 3 SHIFT 1 SHIFT 2 SHIFT 3

RUN 1 RUN 2 RUN 1 RUN 2 RUN 1 RUN 2 RUN 1 RUN 2 RUN 1 RUN 2 RUN 1 RUN 2 RUN 1 RUN 2 RUN 1 RUN 2 RUN 1 RUN 2

 
 

Figure 12-1.  Illustration of a short term planning cycle with a long time horizon. 
 

 
 This approach must consider the need for immediate replanning when there are 
significant situation changes, e.g., when TCT/TST opportunities arise.  Intermediate results could 
be produced, e.g., at 6 hours of simulated time or less.  This would allow one to look at the near 
and intermediate term outcomes at 10 minute intervals, while generating the 72 hour outcomes.  
Short term changes could be worked independently during each run period, but this would likely 
require more people and certainly more computer power. 
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 If Monte Carlo type simulations were required to produce a distribution, this may require 
20 to 50 runs to estimate the distributions of the end states with sufficient accuracy.  If one full 
planning horizon simulation could be run on a single processor, then multiple simulations could 
be run simultaneously on parallel processors. 
 
 
Distributed Processing Considerations 
 

 If the battlespace simulation is spread over multiple processors, as shown in Figure 3-5, 
with feedback loops between processors, then time synchronization must be imposed.  Since 
feedback implies nonlinear behavior, time synchronization becomes critical for validity.  If some 
tools are spread geographically, e.g., for reachback, then there will be significant communication 
time delays relative to single processor speeds, or even with multiple processors on a local LAN.  
This leads to the consideration of having copies of the simulations at a single processing site for 
speed. 
 

 This does not preclude the need for subject area experts to provide inputs in replanning 
cycles.  Thus we must allow for getting subject area expert input into a central processing facility 
if one is to exist.  It will also require getting the outputs back.  This may be prohibited in a 
number of cases from a security standpoint. 
 
 
Best Conditions 
 

 With the above in mind, we will consider the speed requirements under best conditions - 
the entire simulation running in a single computer facility - with no communications latencies.  
We will then consider how a parallel processing environment may increase speed.  We will start 
by using PSI’s JTIDS network management simulation, one of the largest ever built.  It has the 
following properties: 
 

• Runs on a single Intel 3 GHz processor under Windows XP. 
 

• Contains on the order of 125 instances of each platform, each including moving 
platform dynamics, host traffic models, JTIDS terminals, antenna models, link 
models that compute propagation path loss in terrain, and instrumentation to measure 
performance.  Each instance is relatively complex. 

 

• Depending upon the message traffic scenario, use of a graphical display, and 
processor utilization, this simulation runs at approximately real time. 

 
Let’s now estimate the multipliers required to run a full-up battlespace simulation. 
 

• To run a 72 hour scenario in 2 hours requires a multiplier of 36X real time. 
 

• A full-up battlespace simulation may require on the order of 10,000 entities.  This is a 
multiplier of 80 (X 125 for JTIDS = 10,000). 

 

• Using 1GHz as the time unit, requires a multiplier of 3 to make up for the speed of 
the 3 GHz processor used for the JTIDS simulation. 
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 These multipliers = 36 X 80 X 3 = 8640 GHz = 8.64 TeraHertz (THz).  We will round 
this up to 10 THz.  It will be at least 10 years before we get to 100 GHz on the best of Moore 
curves.  This will only be 1/100th of 10 THz.  Three years from now, at 10 GHz, we will need to 
be about 1000 times faster than the best Intel processor. 
 
 
Parallel Processing Considerations 
 
 Theoretically proving that simulations should run much faster on parallel machines is not 
nearly as convincing as demonstrating comparative test times from real experiments.  To date, 
the real measures have produced results that are significantly less than anticipated. 
 
 There are basically two types of computers that we will consider: (1) multiple processors 
running under a single operating system; and (2) a tightly coupled cluster of computers 
(connected via a single/special LAN) each running their own operating system.  We note that a 
cluster may contain type 1multiple processor computers. 
 
 Most simulations built for parallel processing today are tailored to the parallel processing 
environment.  As a result, most of these simulations fall into categories that are easily tailored to 
that environment.  These simulations tend to be embarrassingly parallel, or of a particular 
mathematical form, whereby each processor does a particular piece of the mathematics.  An 
example of an embarrassingly parallel simulation would be doing 100 Monte Carlo runs of a 
large simulation.  Each run can be treated independently and therefore each simulation run can 
be done on a separate processor.  100 processors can be used very efficiently to do this.  The 
101st may be much less efficient, unless it simply supervises the others, and does not try to 
participate in the computation. 
 
 Simulations that use a mathematical representation of the system being simulated, 
whereby they are easily tailored to parallel processors, can also run efficiently.  Examples are 
systems governed by diffusion-like equations, e.g., nuclear, biological, and chemical reactions, 
whereby each processor can represent the spatial mechanics of a separate part of the space.  The 
PBA problem fits none of these molds.  In fact, it contains properties that have been known to 
thwart efficiency in a parallel processing environment.  Our problem calls for running a single 
simulation on a single processor at 10 THz.  Then we must consider the need to run 20 to 50 
simulations to produce sufficiently accurate estimates. 
 
 
Efficiency Considerations 
 

 Again, assuming we are running on a single computer facility, there will be inefficiencies 
that must be accounted for.  If in three years we are using 10 GHz processors, then we would 
need 1000 processors to meet the 10 THz requirement.  Processor efficiency using this many 
processors has been very poor except for the embarrassingly parallel problems.  Battlespace 
simulation does not fit this nor the mathematical mold.  Therefore we must take a wag at the 
processor efficiencies we may expect. 
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 If one achieved 50% using 1000 processors, this would be outstanding by today’s 
measures.  This would require processors running at 20 THz.  If the efficiency were to be 20%, 
this would require 40 THz processors.  Alternatively, we could be looking at 2000 to 5000 10 
GHz processors.  We still must consider the need to run 20 to 50 simulations to produce 
sufficiently accurate estimates. 
 
Summary Of Speed Considerations 
 
 What makes the PBA simulation difficult?  Some of the properties are listed below. 
 

• The number of totally different entities will be on the order of 100. 
 

• The models of each entity will be totally different. 
 

• The number of instances of many entities will exceed 100 - some may number on the 
order of 1000. 

 

• Models may have to be run in geographically distributed simulations, viewed by 
subject area experts. 

 

• Events must be synchronized tightly - in some cases down to milliseconds of 
simulated time. 

 

• Mathematical models will not support the complex nonlinear rules of entity operation. 
 

• It could take 2000 to 5000 processors running at 10 GHz to produce a single 
simulation. 

 

• One may need to run 20 to 50 simulations to produce sufficiently accurate estimates. 
 

 
Approaches To Achieving Speed 
 

From the requirements stated above, any solution to this problem must map into the physical 
deployment of the individual planning tools and subject area experts that use those tools.  This 
implies an architecture of the type shown in Figures 3-5 and 11-2.  Assuming that sufficient 
processing power can be put at each physical location, one must be concerned with the latencies 
between computers and particularly the effects of feedback. 
 

Solving the speed problem depends directly on the architecture of the overall battlespace 
simulation.  For example, it may be possible to flatten the architecture to remove geographical 
latencies from the feedback loops.  This would remove the need for iterative processing (to gain 
convergence) that included large geographical latencies. 
 

If the architecture is flattened, then it is likely that Monte Carlo runs may be done in parallel to 
produce the end state distributions.  This will entail an architecture that supports this 
requirement.  Key to any solution is the need to break the battlespace simulation into 
independent pieces that fit into a flattened architecture.  Then, each piece must be able to take 
advantage of the available hardware that can be used to meet the speed requirements.  This 
implies the ability to automatically generate these simulations so they can run on type 1 parallel 
processor machines, without having to be retailored for parallel processing. 
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13. STRATEGIC VERSUS TACTICAL PLANNING 
 
National Level Modeling 
 
 When considering strategic level planning, many additional factors come into play.  
However, the same principles hold.  The difference is coming up with the data to test prediction 
accuracy.  Often, the available sources only provide soft data.  For example, consider the 
following influential and controllable factors that can affect desired military outcomes. 
 

• Political Environment 
 

• Media Environment 
 

• Financial Environment 
 

• Industrial Environment 
 

• Infrastructure 
 
 It is hard to find numbers measuring elements of the first two factors.  Some numbers can 
be derived for the financial and industrial environment, but there are many differences for which 
numbers are not available.  Infrastructure can be described in terms of road networks, 
communications networks, electric power facilities, etc., where numbers can be used to measure 
relative differences between nations. 
 
 When providing outputs from these types of models, one cannot discard the need to 
measure accuracy of the predictions of future outcomes.  In fact, taking measurements on how 
well one did when measuring past predictions versus actual outcomes is more important because 
of the subjective nature of the models and driving force inputs. 
 
 Coming up with models of this nature should be similar in approach to coming up with 
any white box models.  One should use all of the information available to produce a model that 
resembles the actual physical system.  The study of how to build these particular models is 
considered extensively elsewhere, and is beyond the scope of this project. 
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14.   SUMMARY - ACHIEVING PRACTICAL SOLUTIONS 
 
 Key properties of the modeling, and simulation environment needed to support practical 
battlespace planning solutions are provided below: 
 

• Prediction Accuracy - Are we able to predict the outcomes of various sorties and 
missions with sufficient accuracy so that we can pack them tightly?  This directly 
affects speed of the plan as well as surprise, precision/synchronization, and stability. 

 

• Stability - Elements of a plan can go awry.  Are we able to develop plans that can 
continue with minimum degradation?  Are the resulting plans robust in the face of 
rapid changes? 

 

• Scalability –Are we able to incorporate sufficient details in the models to achieve 
the required prediction accuracy?  Are we able to provide an overall simulation 
architecture and corresponding model architectures to support scalability? 

 

• Speed - Is the speed of the planning environment fast enough to react to changes.  
Can we run sufficient numbers of simulations to produce probability statements with 
sufficient accuracy in time frames that meet replanning demands? 

 

• Ease of Use - Can planners perform replanning functions, using the battlespace 
simulation environment, with sufficient ease?  Can the subject area experts use the 
interfaces without excessive training? 

 
 These properties of the PBA modeling and simulation environment have been addressed 
to the extent permitted within the scope of this project.  One of these topics - speed - has been 
addressed in other projects.  Because of its pertinence to this effort, we reiterated some of these 
considerations here. 
 
 It is most important to understand that, if one makes a probability statement about a 
future outcome, that statement must be supported by a confidence number.  For example, if the 
probability that A returns safely is > 80%, but the confidence in the statement is less than 50%, 
what good is the 80% statement?  Similarly for stability: if a solution is great, but minor 
deviations from that solution are likely and can cause bad outcomes, what good is the solution? 
 
 There is much work to be done to develop good architectural paradigms for models and 
simulations of the distributed type required here.  Speed must be a major consideration, given 
that the requirements for prediction accuracy, stability, and scalability must be met.  As 
described in Section 12, some form of parallel processing is going to be required to meet the 
speed requirements.  This must be accounted for in both the model and simulation architectures. 
 
 Finally, as in most highly successful technologies, sufficient time is required to take 
practical advantage of breakthroughs.  Given the breakthroughs in model and simulation 
architecture required by PBA, one must be able to take advantage of order-of-magnitude speed 
improvements in parallel processing to be of practical use to PBA.  We believe that the concepts 
described in this report form the foundation for those architectures. 
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SITUATION 
 
 
(CAP1 Stage I): For some time the US monitored reports that Orangeland, a country that 
traditionally views the US as an adversary, was taking steps that might provide it with weapons 
of mass destruction (WMD) and the means to deliver them throughout the region and even 
potentially threaten the US homeland. Orangeland is a “rogue state” in the region and US allies 
there look to the US for their security. With an increasing amount of tangible evidence of WMD 
development, especially research into chemical and biological weapons, and the production of 
ballistic and cruise missiles, the US openly and vigorously protested Orangeland’s activities only 
to be re-buffed with denials. As a precaution, SECDEF directed the theater Combatant 
Commander, US Mediterranean Command (COMUSMEDCOM) to step up Look, Listen, and 
Assess operations2 (CAP Stage II). 
 
As those actions started, chemical attacks occurred at various metropolitan areas within the US. 
US Northern Command (USNORTHCOM), supported by its AT AOC, assisted with disaster 
relief operations. SECDEF ordered COMUSMEDCOM to begin contingency planning against 
Orangeland. The goal is to compel Orangeland to stop WMD or TBM/CM deployment or 
employment activities. The working title is Operation DENY FORCE. This contingency support 
on-going, though so far unsuccessful, diplomatic attempts to get Orangeland to the negotiating 
table. 
 
 
 
Input: 
 
SECDEF issues the following guidance via a CJCS WARNING ORDER to COMUSMEDCOM: 
 

• Find, monitor, and assess state of Orangeland’s WMD and TBM development;  
 

• Be prepared to strike surgically to defeat development/deployment;  
 

• Minimize the chances of friendly loss and collateral damage during all operations; 
and 

 

• Consider non-lethal means along with traditional military means for the strike 
contingency. 

 

• Normal command relationships apply.  
 
 

                                                 
1 Crisis Aaction Planning. 
2 Air Force CONOPS 2020. 
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Furthermore, the following forces are made available for planning purposes: 
 

• A Global Strike Task Force (GSTF) comprised of F-22, B-2, Global Hawk and 
Multi-sensor Command & Control Aircraft (MC2A). 

 

• An Air Expeditionary Task Force (AETF). 
 

• The Stennis Carrier Battle Group (CVBG) and Wasp Amphibious Ready Group 
(ARG). 

 

• An Interim Brigade Combat Team (IBCT). 
 

• A Block 30-configured Joint Air & Space Operations Center (JAOC) 
 
The WARNORD directs the Commander to provide precise force requirements no later than 
completion of COA Development (CAP Stage III). 
 
 
 
Process: 
 
Upon receipt of the WARNORD, the COMUSMEDCOM assembles the planning team. While in 
normal operations this could take one of several forms, for the TIE, it is assumed the 
Commander uses a Standing Joint Force Headquarters (SJFHQ) organizational structure and the 
Unified Command structure for this theater uses Functional Commands. This scenario 
concentrates on the JFACC (COMUSMEDAF) and introduces other components only as 
required. Oftentimes it is the case that the JFC tasks planners to develop Planning Guidance and 
Commander’s Intent as part of the Estimate Process. In this scenario, this step is truncated in 
order to focus on the SJFHQ and its interaction with the component planning staffs (e.g., the 
Strategy Division within the JAOC). COMUSMEDCOM issues the following planning 
guidance: 
 

• Develop strike COA options, with supporting analysis, that: 
 

- Strike with lethal means only 
 

- Strike with non-lethal means only 
 

- Strike with a mix of lethal and non-lethal means 
 

• Wargame each option with attention to attrition and collateral damage 
 

• Provide Branch plans for each COA option that addresses: 
 

- TCT: Upgraded (e.g., 3rd generation) Orangeland Air Defenses (e.g., SA-10 
surface-to-air missiles, SU-37 Flanker aircraft), or any TBM/CM (cruise missile) 
deployment/employment activities. 

 

- CSAR 
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COMUSMEDCOM also issued the following Commander’s Intent: 
 
End State 
 

• No WMD/TBM threat to region/US 
 

• Desired effect: deter deployment of WMD/TBM; on order, disrupt (destroy if 
ordered) WMD/TBM development/deployment 

 

• Purpose: regional stability & US security 
 

• Method: surgical strike 
 

• Risk: low to US forces; medium for collateral damage 
 
For this scenario, a modified planning process is used for CAP Stage III.  The basic process 
comes from Joint Pub (JP) 5-00.1.  The key modifications include specifying mechanism 
between actions (strategy) and results (objectives), and specifying campaign (operational) 
assessment as separate from, but building upon, combat assessment. Two sub-processes are key. 
The first is IPB. This sub-process is expanded upon and re-named Operational Net Assessment 
(ONA) in the JFCOM/J9 SJFHQ Concept of Employment. ONA shares JIPB in common with the 
Air Force’s Predictive Battlespace Awareness (PBA) concept. PBA combines IPB (with obvious 
emphasis on the air & space aspects of IPB) with ISR planning and management. ONA builds 
upon IPB (with obvious emphasis on the Joint aspects of IPB) by offering an analysis of what 
actions might be taken to achieve JFC desired effects. 
 
The second sub-process is a modification of the effects-based planning framework offered by 
then-Colonel David A. Deptula in Firing For Effect. The small change is making explicit the 
interactive nature of IPB (identifying targets) and effects-based planning (identifying specific 
effects). 
 
As the planning teams assemble via the SJFHQ-directed collaborative network, the planning 
tasks are broken out through the staff estimate processes.  The input is commander’s intent. The 
output is a COA in the form of an ETO (Effects Tasking Order). In between, options are 
generated and wargamed.  The results are presented to the JFC for decision.  These processes and 
products are highly interactive between the SJFHQ and component planning staffs. The JFACC, 
for example, would direct preparation of the air estimate of the situation. 
 
Within the SJFHQ, several teams, cells, boards and agencies are involved.  For example, ONA 
teams start with center-of-gravity (COG) analysis in support of determining Orangeland’s 
PMESII (political, military, economic, social informational, and infrastructure) strengths and 
vulnerabilities.  EBO teams begin mission analysis to determine specified, implied, and essential 
tasks in the commander’s intent.  Logistics teams begin with forces made available for planning 
to start the detailed time phased force and deployment data processes. 
 



 

81 

Planners develop strategy options based on three mechanisms. Each is tied directly to the 
political-military leadership model of Orangeland. Analysts determined that model showed an 
autocratic, oligarchic leadership with limited points of access. The first mechanism is 
destruction, that is, a classic attrition, or brute force, strategy. The defeat mechanism3 is that by 
destroying Orangeland’s WMD or TBM/CM capabilities, they could no longer threaten their 
regional neighbors or the US homeland with those systems. 
 
The second mechanism is disruption, that is a denial strategy. The defeat mechanism is that by 
disrupting Orangeland’s capability to deploy or employ those systems, it is prevented from 
threatening others, at least for the moment, and thus, by being denied the means of obtaining 
their objective (presumed to be regional hegemony) Orangeland would be more likely to 
negotiate. 
 
The final strategy option is coercion through holding these WMD and TBM/CM systems at risk. 
The defeat mechanism is that the costs of losing these systems outweigh the benefit of having 
them so that if Orangeland believes the US could indeed destroy these systems (see the first 
mechanism); they would more likely negotiate then risk losing these capabilities. 
 
These three options meld into specific COA options by varying the weights, or probabilities, of 
the three mechanisms. For example, COA option one is heavily weighted towards attriting 
Orangeland’s WMD and TBM/CM capabilities through direct attack on these systems and 
against a select set of targets within these systems’ value chains. Thus, destruction combines 
with disruption with at least the implicit assumption that, over the course of the campaign, 
Orangeland will be coerced into negotiation rather than see the continual loss of these valuable—
and expensive—systems. 
 
These COA options are wargamed against specified criteria.4 One is the likelihood of US actions 
provoking Orangeland employment of these capabilities under fear of a “use or lose” scenario. 
US planners keenly recall charges that Operation ALLIED FORCE in 1999 provoked 
Yugoslavian leader Slobodon Milosevic to accelerate and intensify the ethic cleansing actions 
against the Albanian Kosovors.  COA option one scores low on this criterion. 
 

                                                 
3 A defeat, or “overcoming,” mechanism is normally only specified as such at the national and theater strategic 

levels (using Universal Joint Task List nomenclature). It is defined as the explanation on how the obstacle 

preventing attainment of a goal is overcome. In a zero-sum situation, it can be viewed as “winning” versus “losing.” 

However, in on-zero sum situations, like a Humanitarian Relief Operations (HUMRO) or deterrence operations 

where the strategic aim is a negative (such as peace keeping) defeat mechanisms still exist even though terms like 

winning or losing are not normally used except as propaganda (e.g., “we’re winning the peace”). At the theater 

operational and below levels, it is normally simply referred to as mechanism—the explanation on why the direct or 

indirect action causes the effect (or outcome). 
4 Each COA option is assumed to be adequate, acceptable, and complete. The evaluation of the COA options against 

those criteria is omitted. 
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Option two, that disrupts Orangeland’s WMD and TBM/CM capability not by directly attacking 
these systems but rather through lethal and non-lethal attacks against supporting systems and 
infrastructure, scores higher in wargames on this “propensity to provoke” criteria. On the other 
hand, option two scores lower on three additional criteria. One is time required to accomplish the 
desired effect. Since Orangeland is best able to determine whether their WMD or TBM/CM 
capabilities are “disrupted” to such an extent they feel compelled to negotiate, the likelihood is 
these operations will take longer than under option one. This length is exacerbated by the belief 
that non-lethal effects take longer to be felt than effects instigated by direct physical actions. The 
other two criteria scores derive from the “time-to-complete” criteria. These are “probability of 
friendly losses” and “probability of collateral damage.” The more actions taken, the more likely 
something goes wrong. These likelihood’s are mitigated somewhat by the non-lethal force 
applications that form part of option two (and three) but not option one. 
 
Option 3 scores better than the other two on the collateral damage, friendly loss and provocation 
criteria. It scores worst on time-to-complete and likelihood of attaining the desired effect criteria. 
That is because it emphasizes non-lethal attacks that demonstrate US capability to harm 
Orangeland’s WMD and TBM/CM capabilities and support systems without actually damaging 
any. Hence, the success of this option hinges critically on the credibility of the threat. That 
credibility is a function of resolve to persevere and the willingness to escalate to more lethal 
means if Orangeland refuses to negotiate. 
 
Across all the criteria, option two scores highest. This is the one recommended to the 
commander by the planners. The JFC, based upon consultations with SECDEF and others, 
decides the coercive nature of the attacks is best served by attacking up the WMD/TBM “value 
chain.” This accomplishes three things: demonstrates US ability of hold these assets at risk; 
demonstrates US resolve to do so; and should not force Orangeland into a “use or lose” situation 
by directly attacking these weapon systems themselves unless Orangeland shows signs of 
preparing to deploy or employ any of these weapons 
 
The JFC orders that branches be fully fleshed out. The most critical is the provocation scenario. 
The commander wants ISR assets planned and managed with an eye towards detecting any 
Orangeland activity that might indicate WMD or TBM/CM deployment or employment. Further, 
the JFC directs contingency strike planning that can respond quickly to any indications or 
warnings found by ISR. The second contingency is the loss of an aircraft. Besides the obvious 
desire to recover any lost pilot, the JFC fears the pilot may become a bargaining advantage 
Orangeland could exploit to mitigate the US actions. 
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Output: 
 
The COA sent to the components for detailed planning has these elements: 
 

1. What (desired effect): Disrupt (destroy if ordered) Orangeland’s WMD and TBM/CM 
capability to deploy or employ. 

 

2. How (strategy): Attack Orangeland’s supporting systems, such as WMD/TBM R&D 
facilities, and infrastructure elements, such as Command and Control (C2) or storage, that 
directly influence their WMD or TBM/CM deployment or employment capabilities. 

 

3. Why (rationale): US desire regional stability and reduced threat to the US homeland. 
Orangeland WMD and TBM/CM capabilities, and their apparent willingness to use them, 
threaten both these objectives. Therefore reduction in this threat increases the probability 
the US attains its objectives. 

 

4. Why (mechanism): If Orangeland’s WMD and TBM/CM capabilities are disrupted, then 
they will more likely negotiate with the US because Orangeland would fear further US 
action to directly destroy these valuable, and expensive to replace, capabilities. 

 

5. With (resources): Forces made available for planning. 
 

6. Where (location): To be determined by component planners. 
 

7. When (time): Within 24 hours of receipt of EXECUTE ORDER. 
 

8. Who (units): Initial strike by the Global Strike Task Force with follow-on (if required) 
strike from the CVBG and AETF. ARG and IBCT on call. 

 
ROE: take all steps to minimize the likelihood of friendly loss and collateral damage; maximize 
the use of non-lethal means where appropriate. 
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CSAR Branch 
 
CSAR is somewhat different from a TCT (time critical target) problem.  The former is more 
sensitive to location, made worse by CCD (cover, concealment, and deception) efforts, while 
generally less sensitive to time than a TCT.  On the other hand, a TCT is less sensitive to 
location--within the ellipse of planned weapons such as AGM-130 is generally good enough--but 
the timing window can be less than 10 minutes from “find” to “engage.” Second, CSAR assets 
are dedicated assets whereas TCT assets may have to be diverted from other missions.  Thus, 
TCT decisions require more trade-off analysis, under stricter time constraints, than CSAR. 
 
The one mitigating factor, of course, is that if all goes as planned, the friendly survivor is an 
active participant in the rescue attempt whereas in classic CCD, the adversary is taking measures, 
both active and passive, to thwart detection.  On the other hand, in a CSAR scenario the survivor 
is trying to thwart the adversary detecting their location.  Further, CSAR planners must account 
for the situation where, for a myriad of reasons, the survivor’s electronic apparatus is not 
working or, perhaps due to physical incapacitation, the survivor is completely passive in their 
rescue. 
 
 DAR (Designated Areas for Recovery) data is generated as part of planning.  Also 
supporting is Enemy Order of Battle (EOB) data so planners understand where the highest 
threats are likely to be encountered.  Obviously, that is where the SEAD (Suppression of Enemy 
Air Defenses) assets are concentrated but it is also, where the greatest likelihood of a shoot down 
occurs. 
 
 When the shoot down occurs (that is, CSAR execution), ISR assets are re-configured to 
support the rescue.  Of great importance is the GMTI data that monitors vehicular traffic in and 
around the survivor’s location.  This is an input into the decision-making process on how much 
time is available to prevent the survivor’s capture. 
 
 
 
 
 
 


